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Abstract

The effect of a treatment may depend on the intensity with which it is administered. We

study identification of ordered treatment effects with a binary instrument, focusing on the effect

of moving from the treatment’s minimum to maximum intensity. With arbitrary heterogeneity

across units, standard IV assumptions (Angrist and Imbens, 1995) do not constrain this param-

eter, even among compliers. We consider a range of additional assumptions and show how

they can deliver sharp, informative bounds. We illustrate our approach with two applications,

involving the effect of (1) health insurance on emergency department usage, and (2) attendance

in an after-school program on student learning. (JEL C01, C21, C26)
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1 Introduction

In many settings, the causal effect of a treatment on an outcome depends on the intensity with which

the treatment is administered. For example, the effect of a drug depends on its dosage. The effect

of education on wages depends on the number of years of completed schooling. When a binary

instrument is used to estimate the effect of a non-binary treatment with variable intensity, the two-

stage least-squares estimator identifies the Average Causal Response (ACR), a weighted average of

causal effects of a unit change in treatment intensity, where the weights depend on the fraction of

compliers induced to cross the various treatment intensity levels (Angrist and Imbens, 1995).

In this paper, we study the causal effect of a change in the intensity of a non-binary ordered

treatment when the researcher has access to a valid binary instrument. We focus primarily on a

parameter we refer to as the cumulative complier effect (CCE), which captures the average effect

of moving from a treatment’s minimum intensity to its maximum intensity among those who are

induced by the instrument to move to a higher treatment intensity. Frequently, this parameter is an

important one for policymakers to understand, such as when a new program or policy is being rolled

out to a previously unexposed group, or when a researcher investigates whether a treatment exhibits

diminishing marginal returns in its intensity. In such cases, the CCE reveals the effect of providing

a “full dose” of the program to individuals who would otherwise not receive it, rather than—as

with the ACR—a weighted average of dose-specific causal effects based on the particulars of the

intervention being evaluated.

The main challenge in identifying the CCE is understanding the dose-response relationship

between the treatment and the outcome – i.e., the causal effect of an additional unit of treatment in-

tensity at each level of treatment (referred to as unit causal effects). Under the standard instrumen-

tal variable (IV) assumptions of relevance, independence, and monotonicity, the two-stage least-

squares estimator identifies only a specific weighted average of these unit causal effects (i.e., the

ACR). We highlight how extrapolating from the ACR to the CCE is subject to two forms of poten-

tial biases. First, the ACR over-weights the unit causal effects among compliers whose treatment
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intensity is more greatly affected by the instrument. Second, the ACR over-weights the unit causal

effect for ranges of the dose response function through which compliers are more likely to be in-

duced by the instrument. Thus, depending on the specific instrument being analyzed, the ACR may

yield a very different picture of a treatment’s effects than the CCE. In fact, under the standard set

of IV assumptions, we show that the CCE is entirely unconstrained, in that the data do not permit

the researcher to rule out any possible value for the CCE.

In this paper, we consider identification of the CCE under additional identifying assumptions.

The key assumption we consider requires a researcher to abstract from heterogeneity in the unit

causal effects within the population of compliers. This assumption is restrictive but may be a plau-

sible approximation in research settings of interest, as we illustrate through two applications. We

show how a researcher may use this assumption, along with additional structure motivated by the

setting at hand, to partially identify the CCE as the solution to a constrained linear optimization

problem. For example, a researcher may impose sign restrictions on the unit causal effects or on

the concavity of the dose-response function, as in Goldin, Lurie and McCubbin (2021), or on the

margin through which an instrument affects participation in a treatment, as in Rose and Shem-Tov

(2021). Here, we develop the conditions under which this approach identifies bounds on the CCE.

In some cases, the solution to the constrained optimization problem takes the form of sharp analytic

bounds, which we characterize below.

We apply our approach to study two randomized evaluations, involving the free provision of

health insurance and an after-school instruction program, respectively. For policymakers consid-

ering whether to expand these pilot programs, the CCE is a particularly relevant parameter; it de-

scribes the effect of fully providing the program to individuals who would not otherwise be able to

participate. With respect to the health insurance expansion we study, for example, we focus on the

effect of providing a full year of health insurance coverage relative to providing no coverage. As

we discuss in more detail below, this parameter could differ from the ACR in practice because the

experimental intervention yielded a heterogeneous first-stage effect on months of insurance taken

up, and the relationship between months of insurance and medical outcomes may be non-linear.
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Moreover, some treatments are designed to be taken up for their entire duration, as with the after-

school instruction program that we study. In such settings, the CCE is a natural parameter of interest

because it captures the “all-or-nothing” manner in which the treatment is intended to be provided.

Although our primary focus is on the CCE, we also consider treatment intensity changes within

the interior of the dose-response function. We find that the assumptions that permit partial iden-

tification of the CCE may also yield informative bounds for these related parameters. We provide

details of this analysis in the Online Appendix.

In contrast to the large literature studying identification of the effects of binary treatments with

binary instruments, there has been less work studying the use of binary instruments to identify

the effects of non-binary treatments. Angrist and Imbens (1995) provides conditions under which

two stage least squares identifies the ACR, but as discussed above and in Heckman, Urzua and

Vytlacil (2006), the ACR is tied to a specific instrument rather than the treatment, and therefore

may not be well-suited to assessing alternative policy interventions. A related literature focuses on

extrapolating parameters beyond the LATE from IV research designs, but the methods studied in

this literature typically require additional exogenous variation in the form of non-binary instruments

(Heckman and Vytlacil, 2007; Imbens and Newey, 2009) or limit their focus to binary treatments

(e.g., Balke and Pearl, 1997; Mogstad and Torgovitsky, 2018; Mogstad, Santos and Torgovitsky,

2018). One exception is Kamat, Norris and Pecenco (2023), which considers partial identification

of a range of treatment effect parameters in the presence of multiple treatments and a discrete-valued

instrument; identification is facilitated by restrictions on selection into treatment and unobserved

heterogeneity. A second exception is Torgovitsky (2015), which point-identifies the dose response

function for a continuous treatment under the assumption of rank invariance for both the first-stage

and outcome equations. Finally, a recent working paper by Chernozhukov et al. (2024) studies

treatment effect heterogeneity in an IV framework that accommodates non-binary treatments by

imposing restrictions on the relationship between the treatment assignment and potential outcomes.

In contrast to these methods, identification under our approach relies on restricting heterogeneity

across compliant subgroups in conjunction with economically motivated restrictions on the shape
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of the treatment’s dose-response function.1

In addition, our work adds to a large literature that studies partial identification of treatment

effect models; recent examples include Fan, Sherman and Shum (2014), Arnold, Dobbie and Hull

(2022), Rambachan and Roth (2023), and Tebaldi, Torgovitsky and Yang (2023). With respect to

IV models in particular, many of these papers study what can be learned when the standard IV

assumptions do not hold (e.g., Manski and Pepper, 2000; De Chaisemartin, 2017); see Swanson

et al. (2018) for a review. However, as we show below, even when the standard IV assumptions do

hold, the data do not constrain the CCE when there is a single binary instrument and a non-binary

treatment. Hence, our approach is to study how imposing additional structure beyond Angrist and

Imbens (1995) allows a researcher to partially identify the CCE.

Finally, a common practice by researchers in settings with non-binary treatments is to “bina-

rize” the treatment by collapsing it into two categories; two recent papers study the assumptions

underlying the validity of this approach (Andresen and Huber, 2021; Rose and Shem-Tov, 2024).

In contrast, the parameter we study is based on the dose-response relationship for the original (un-

collapsed) non-binary treatment.

2 Setting and Notation

Consider a population, indexed by i, in which individuals are assigned a binary instrument, Zi ∈

{0, 1}, and one level of a discrete treatment, ranging in intensity from 0 to J . Let Di(Z) ∈

{0, 1, 2, ..., J} denote i’s treatment level under each value of the instrument, and let Yi(j) denote

the outcome of interest that would be obtained if i were to receive treatment level j.

We assume that the following conditions are satisfied.

Assumption 1: Relevance

E[Di | Zi = 1]− E[Di | Zi = 0] ̸= 0

Assumption 2: Independence
1Lochner and Moretti (2015) impose a similar restriction on treatment effect heterogeneity to motivate a proposed

test for exogeneity of a multi-valued treatment using a binary instrument.
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{Yi(0), Yi(1), ..., Yi(J), Di(0), Di(1)} ⊥⊥ Zi

Assumption 3: Monotonicity

IP (Di(1) ≥ Di(0)) = 1

Angrist and Imbens (1995) show that under these assumptions, the standard two-stage least-

squares estimator identifies the average causal response (ACR) of Di on Yi, i.e. a weighted average

of the causal effect from a unit change in the treatment on the outcome, where the weights are the

share of corresponding unit changes in the treatment intensity induced by the instrument. More

precisely, the ACR corresponds to the right hand side of the following equation:

E[Y | Z = 1]− E[Y | Z = 0]

E[D | Z = 1]− E[D | Z = 0]
=

J∑
j=1

wjE[Yi(j)− Yi(j − 1) | Di(1) ≥ j > Di(0)] (1)

where

wj =
P [Di(1) ≥ j > Di(0)]∑J

j′=1 P [Di(1) ≥ j′ > Di(0)]
.

Our goal is to shed light on the average cumulative effect of a treatment. We define the cumu-

lative effect of a treatment on an outcome Y as the causal effect of a shift from D = 0 to D = J , or

Yi(J) − Yi(0). Our parameter of interest, the cumulative complier effect (CCE), is defined as the

mean cumulative effect for the population of compliers:

CCE = E [Yi(J)− Yi(0) | Di(1) > Di(0)] (2)

In the next section, we highlight challenges to identifying the CCE under Assumptions 1-

3. However, these assumptions do permit us to identify the weights corresponding to each unit-

response in Equation 1, {wj}Jj=1. In Section 4, we propose using these estimated weights, along

with the estimated ACR and setting-specific assumptions about the unit causal effects, to bound the

CCE.

5



3 Challenges to Identifying the CCE

Although both the ACR and CCE are functions of a treatment’s unit causal effects, the former

cannot be directly extrapolated to identify the latter. Whereas the ACR summarizes the average

causal effect associated with a specific intervention, the CCE summarizes the average causal effect

of the treatment across all compliers and all treatment intensities. There are therefore two potential

forms of selection that may cause the ACR to diverge from the CCE. First, those individuals who

are induced by the intervention to increase their treatment intensity may also have higher per-unit

treatment effects. Second, the additional levels of the treatment induced by the intervention may

have higher per-unit treatment effects than other levels of the treatment (that were not induced by

the intervention).2

Given the potential wedge between the ACR and the CCE, a natural question to ask is what

can be learned about the CCE under the assumptions that identify the ACR? Unfortunately, the

answer is “not much.” In fact, the CCE is entirely unconstrained under Assumptions 1-3, as we

show formally in Appendix C. Intuitively, since not all compliers move along the full length of the

dose-response function from treatment intensity 0 to J , but still contribute to the CCE, we need to

impose additional structure on the unit-causal effects to extrapolate across complier types.3

4 Identifying the Cumulative Complier Effect

Under Complier Effect Homogeneity

In this section, we abstract from potential heterogeneity in the unit causal effects among compliers

to facilitate identification of the CCE. We consider the following assumption:

Assumption 4: Homogeneous Incremental Effect Across Compliant Subgroups

E[Yi(j)− Yi(j − 1) | Di(1) ≥ k > Di(0)] = βj for all k = 1, ..., J

2In Appendix B, we formally relate the ACR and CCE in terms of these biases.
3When the unit causal effects are known to be bounded, the CCE is bounded as well; see Appendix C for details.
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This assumption is restrictive, but as we illustrate in Section 5, it can be plausible in real-world

applications of interest (potentially after conditioning on observable characteristics along the lines

of Angrist and Fernandez-Val (2010)). The value of the assumption is that it focuses attention

on the uncertainty in the identification of the CCE that arises due to the unknown shape of the

treatment’s dose-response function. When Assumption 4 holds, the CCE corresponds to the effect

of moving from minimum treatment intensity to maximum treatment intensity for any compliant

subgroup. Lochner and Moretti (2015) impose a similar assumption to test exogeneity of a multi-

valued treatment.

Under Assumption 4, we can express the ACR and CCE as

ACR =
J∑

j=1

wjβj

and

CCE =
J∑

j=1

βj

To shed light on the range of cumulative effects of the treatment consistent with the data, we

find bounds on the CCE by casting it as a linear optimization problem. Under Assumptions 1-4,

the optimization problem can be written as:

Maximize/Minimize
{βj}

J∑
j=1

βj LP.1

subject to
J∑

j=1

βjwj = ACR (C.1)

Note that the ACR and set of weights, {wj}Jj=1, in LP.1 are identified and estimable under

Assumptions 1-3 (Angrist and Imbens, 1995). The ACR can be estimated using the sample mo-

ments corresponding to the expectations on the left-hand side of Equation (1). The weights can be

estimated by comparing the share of units at each treatment level under Z = 0 versus Z = 1.

Denote the maximum feasible value of this objective function,
∑J

j=1 βj , by CCE and the min-
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imum by CCE. Since βj can be arbitrarily large or small, the CCE is generally unbounded under

Assumption 1-4. More formally, for any a ∈ R, non-uniform set of weights {w}, and observed

ACR value, there exists a feasible solution vector (β1, β2, ..., βJ) such that CCE = a. Hence, ad-

ditional assumptions regarding the unit causal effects are needed to obtain meaningful bounds on

the CCE.4

We now consider a range of additional assumptions that may be appropriate to impose depend-

ing on the application, in the spirit of Manski (2003). In some settings, the direction of the treatment

effect will be known from theory or prior research. In such cases, without loss of generality, we can

impose that the direction of each unit effects is positive:

Assumption 5: Uniform Sign of Unit Causal Effects

βj ≥ 0 ∀ j

Under Assumptions 1-5, the CCE can be bounded based on the ACR and the empirically ob-

servable weights.

Proposition 1: Under Assumptions 1-5, the following sharp bounds hold:

CCE ∈

[
ACR

wj

,
ACR

wj

]

where j = argminj∈{1,...J}{wj} and j = argmaxj∈{1,...J}{wj}.5

The proof of Proposition 1, and all subsequent results, is contained in the Online Appendix.

The bounds provided in the Proposition are sharp, in the sense that all values of the CCE in the

identified set are compatible with Assumptions 1-5 and the data (see Appendix G for details).

In some settings, it will be reasonable to impose additional assumptions beyond restrictions on
4In settings where additional exogenous variation is available in the form of multiple instruments, Angrist and

Imbens (1995) show that each instrument can be used to identify an ACR and a set of compliance weights. When the
number of instruments is equal to the number of treatment levels, the CCE may be point-identified. More generally,
when the number of treatment levels exceeds the number of instruments, the researcher can incorporate the variation
from the additional instruments to tighten the bounds on the CCE by adding them as constraints to LP.1. (see Appendix
D for details).

5Note that if one of the weights is zero, then wj = 0; in this case, CCE ∈
[
ACR
wj

, ∞
)

.
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the sign of the treatment effect. For example, the researcher may have good reason to believe that

the magnitude of the unit causal effects is non-increasing in the intensity of the treatment.6 We refer

to this assumption as concavity of the dose-response function:

Assumption 6: Concavity

βj ≥ βj+1 ∀ j = 1, ..., J − 1

Under Assumptions 1-6, bounds on the CCE can be obtained from the linear optimization prob-

lem:

Maximize/Minimize
{βj}

J∑
j=1

βj LP.2

subject to
J∑

j=1

βjwj = ACR (C.1)

βj ≥ 0 ∀ j = 1, ..., J (C.2)

βj ≥ βj+1 ∀ j = 1, ..., J − 1 (C.3)

As described above, the ACR and weights in LP.2 are identified and estimable under Assumptions

1-3. Goldin, Lurie and McCubbin (2021) solved this linear problem to estimate bounds on the

cumulative effect of health insurance coverage in their setting.

Finally, in some settings the share of compliers that are induced by an instrument to cross a

particular treatment intensity threshold will be non-decreasing in the threshold level:

Assumption 7: Monotonic Complier-Share Weights

wj ≥ wj+1 ∀ j = 1, ..., J − 1, and the inequality is strict for at least one such j.

Unlike Assumptions 5 and 6, Assumption 7 is empirically verifiable because the complier-share

weights are identified under our maintained Assumptions 1-3. A sufficient condition for Assump-
6A different potential restriction that a researcher might impose is that the magnitude of each unit causal effect is

bounded between known values. We extend Proposition 1 to this setting in Appendix H.1. A related restriction is that
the outcome of interest has bounded support. In addition to implying bounds on the unit causal effects, this assumption
constrains the values the unobserved potential outcomes can take on. We discuss this setting in Appendix H.2.
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tion 7 to hold is that all individuals who increase treatment intensity in response to the instrument

do so on the extensive margin (Rose and Shem-Tov, 2024). In settings where these conditions hold,

the bounds that emerge from LP.2 take the following simple analytic form:

Proposition 2: Under Assumptions 1-7, the following sharp bounds hold:

CCE ∈
[
ACR

w1

, ACR× J

]

When Proposition 2 applies, the CCE is maximized when the dose-response function is linear

and minimized when intensive margin changes in the intensity of the treatment have no effect on

the outcome. The bounds provided in Proposition 2 are sharp, in the sense that all values of the

CCE in the identified set are compatible with Assumptions 1-7 and the data (see Appendix G for

details).

Finally, in some settings the researcher may be interested in parameters relating to the dose-

response function other than the CCE, such as when a potential intervention is intended to shift

behavior across a subset of treatment values. In the appendix, we study what may be identified

for a broader class of parameters, relating to the effect of moving from treatment intensity j1 to

j2 where j2 > j1 and j1, j2 ∈ {0, 1, ..., J}. We show that the sharp analytic bounds provided in

Propositions 1 and 2 extend naturally to this setting; see Online Appendix I for details.

5 Applications

We illustrate the method by applying it in two empirical settings: the Oregon Health Insurance Ex-

periment (Taubman et al., 2014) and a randomized intervention studying the effect of a computer-

aided learning program for middle-school students on test scores in India (Muralidharan, Singh and

Ganimian, 2019). Table 1 shows the ACR and the bounds for the CCE for both settings. Following

Andrews (2000), we provide confidence intervals on the CCE bounds using a modified bootstrap-

ping procedure that provides accurate coverage in linear optimization settings like the one we study.
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5.1 Health Insurance and Emergency Department Usage

In 2008, certain low-income adults in Oregon were selected through a lottery to enroll in Medicaid.

Taubman et al. (2014) use this random variation to study the effect of Medicaid on Emergency De-

partment (ED) usage. To shed light on the cumulative effect of obtaining a full period of Medicaid

coverage, we define the treatment intensity as the number of months an individual was enrolled in

Medicaid during the 19-month study period. The data imply an ACR of Medicaid on ED use of

0.53 percentage points. While this captures the average effect of the additional months of Medi-

caid coverage induced by the particular intervention being studied, hospitals and policymakers may

also be interested in understanding the effect of providing annual coverage to previously uninsured

individuals.

It is likely that there is heterogeneity in the effect of Medicaid on ED usage across compliers.

However, Kowalski (2021) shows that previous ER utilization can explain the vast majority of this

heterogeneity; the marginal treatment effect curve is (approximately) flat after conditioning on prior

ED use. Motivated by this finding, we apply Assumption 4 conditional on prior ED use and bound

the CCE separately for those with and without a history of ED use before the Medicaid lottery. We

assume that the effect of Medicaid on ED use is non-negative (Assumption 5), and that the per-

month effect is non-increasing in the number of months of enrollment (Assumption 6). However, it

is likely that the Medicaid lottery increased months of enrollment for some individuals who would

have enrolled in coverage even absent the treatment, suggesting that Assumption 7 may not hold in

this context.7 Hence, we obtain bounds on the CCE by solving the linear program in LP.2.

In this context, the CCE captures the causal effect on ED usage of enrolling in Medicaid for the

full 19-month study period. Our results suggest this effect was an increase in the share of individuals

using the ED at least once of between 6.7 and 9.8 percentage points for those without a prior history

of ED use, and between 7.4 and 10.6 percentage points for those with a prior history of ED use. We

can combine these into a CCE for the overall sample by taking a weighted average of the two, where

the weights correspond to the observed distribution of prior ED use. The implied CCE using this
7That being said, Appendix Figure 1(a) and 1(b) suggests only slight deviations from monotonicity.
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approach is between 6.9 and 10.1 percentage points. Similarly, we can also derive bounds on the

effect associated with providing uncovered individuals with a full year of coverage by replacing the

objective function with
∑12

j=1 βj .8 Doing so implies an effect of a full year of Medicaid coverage

of between 6.3 and 7.6 percentage points.9

5.2 After-School Instruction and Educational Outcomes

Muralidharan, Singh and Ganimian (2019) study the effect of a technology-aided after-school in-

struction program on test scores in urban India, using a lottery that provided winners with free

access to the program. Using the outcome of the lottery to instrument for weeks of program atten-

dance, the data from the paper imply an ACR for the program of a 0.045 standard deviation increase

in math test scores and a 0.030 standard deviation increase for Hindi (see Table 1).10 While the ACR

identifies a specific weighted average effect of attending the Mindspark centers for a week on test

scores, a policymaker considering whether to scale up the program might be particularly interested

in the overall effect of providing a full course of after-school instruction to a new set of students.

Indeed, since the program was designed to be taken up for its entire duration, the CCE is a natural

parameter of interest.

The authors suggest that it is likely that the effects of the program are homogeneous across stu-

dents using three pieces of evidence. First, the observed treatment effects are similar across the

distribution of student achievement prior to the program – a likely source of heterogeneity. Second,

the authors cannot reject equality of the IV and OLS value-added estimates, suggesting the ATE and

LATE might be similar and heterogeneity in the compliant subgroups might be small. Finally, the

authors note that the outcomes for the control group and never-takers are similar, suggesting equal-
8Note that under Assumption 4, this parameter reflects the effect of a full year of Medicaid coverage for those

compliers who would have enrolled in partial-year coverage absent the intervention (Di(0) > 0), as well as for those
compliers who would not have otherwise enrolled in any coverage (Di(0) = 0).

9In general, the width of the bounds on
∑12

j=1 βj is a function of the particular range of the dose-response function
of interest (in this case, 0 to 12 months of coverage) and the distribution of treatment intensity changes induced by the
instrument; see Online Appendix I for details.

10In their original analysis, the authors focused on days of attendance rather than weeks. Here, we pool the treatment
intensity to the week-level to reduce statistical variability.
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ity of potential outcomes across different compliance groups. Taken together, these observations

provide suggestive evidence in support of Assumption 4.

In addition, Assumptions 5 and 6 both seem likely to hold in this context: one would not expect

the program to reduce learning and it seems plausible (though not guaranteed) that there would

be non-increasing returns to scale to program attendance. Because only students who won the

lottery could attend the program, we know that all compliers were affected on the extensive margin.

Hence, as discussed in Section 4, the weights are guaranteed to be monotonically declining so that

Assumption 7 holds. Appendix Figure 1(c) empirically verifies that this is the case.

When these conditions hold, Proposition 2 provides sharp bounds for the CCE of weeks of

attendance. In particular, translating the ACR point estimate into bounds for the CCE implies that

the full program course (12 weeks) would increase math scores by between 0.40 and 0.54 standard

deviations and Hindi scores by between 0.27 and 0.36 standard deviations (Table 1, Column 2).

Like the main IV estimate, these bounds grow substantially less precise, but continue to exclude

zero, once statistical uncertainty is taken into account (Table 1, Column 3).

6 Conclusion

Researchers are often interested in evaluating the effect of non-binary treatments. In such settings,

the cumulative effect of the treatment, i.e., the effect of moving from minimum to maximum treat-

ment intensity, is a natural parameter of interest. In this paper, we have highlighted conditions that

allow for partial identification of this parameter among compliers and show that, in their absence,

meaningful identification is generally not feasible. While the required assumptions are strong, we

illustrate with two applications that they are plausible in settings of interest to applied researchers.
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Table 1: Bounds on the Cumulative Complier Effect (CCE)

(1) (2) (3)

Average Causal CCE Bounds CCE Bounds
Response (with 95% CI)

Taubman et al. (2014)
Emergency Department Usage 0.529 [6.918, 10.053] [2.160, 18.064]

(0.181)
Muralidharan, Singh and Ganimian (2019)

Math Test Score 0.045 [0.400, 0.538] [0.175, 0.722]
(0.007)

Hindi Test Score 0.030 [0.265, 0.357] [0.099, 0.630]
(0.007)

Notes: The table illustrates the application of the proposed method to estimating the effect of (1) health insurance
coverage on emergency department usage and (2) after-school instruction on test scores. The Average Causal Response
(Column 1) is obtained from a two-stage least-squares regression using the data reported in the specified study. The
point estimates for theCCE bounds (Column 2) are calculated as described in Section 4. The 95% confidence intervals
(Column 3) are obtained from an m-out-of-n bootstrapping procedure (Demuynck, 2015; Huang et al., 2016): instead
of drawing samples (with replacement) of size n equal to the sample size, we draw samples of size m ≪ n. To select
the appropriate m for this procedure, we follow the method proposed in Bickel and Sakov (2008).
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(b) Taubman et al. (2014) Prior ED Use Sample:
Medicaid Months

(c) Muralidharan, Singh and Ganimian (2019):
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Figure A.1: Distribution of Estimation Unit Weights

B Relationship between the ACR and CCE
It will be convenient to introduce the following notation. Let βij denote the unit-causal effect for individual i at treatment
intensity j: βij = Yi(j)− Yi(j − 1). Let δij indicate whether the instrument induces unit i to cross treatment intensity j,
δij = 1{Di(1) ≥ j > Di(0)}.

Without loss of generality, suppose that i is indexed such that Di(1) > Di(0) ⇐⇒ i ≤ Nc. In this case, the ACR
can be written as:

ACR =

∑N
i=1

∑J
j=1 δijβij∑N

i=1

∑J
j=1 δij

and the CCE can be written as

CCE =
1

Nc

N∑
i=1

J∑
j=1

1(Di(1) > Di(0))βij =
1

Nc

Nc∑
i=1

J∑
j=1

βij
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Define γ as the average unit causal effect among compliers: γ = CCE/J . Contrasting γ with the ACR, the ACR is a
weighted average of unit causal effects for compliers and weights corresponding to a specific treatment level. On the other
hand, the γ considers the average effect of a unit increase in treatment for all types of compliers if they had all moved along
the full length of the causal response. In contrast to the weighting scheme of the ACR, γ weighs all compliers equally.

Next, note that each unit causal effect, βij , can be decomposed as follows:

βij = γ + γi + γj + γ̃ij

where γi captures unit-level heterogeneity, γi = 1
J

∑
j βij − γ; γj captures heterogeneity across treatment intensities,

γj =
1
Nc

∑Nc
i βij − γ; and γ̃ij captures the remaining heterogeneity among unit causal effects, γ̃ij = βij − γ − γi − γj .

Note that E[γi] = E[γj ] = E[γ̃ij ] = 0.

Finally, let δi denote i’s (mean) change in treatment intensity induced by the instrument, δi = 1
J

J∑
j=1

δij ; δj denote

the share of compliers induced by the instrument to cross treatment intensity j, δj = 1
Nc

Nc∑
i=1

δij ; and δ denote the mean

increase in treatment units induced by the instrument, δ = 1
Nc

1
J

∑Nc
i=1

∑J
j=1 δij . Substituting this decomposition and

notation into the ACR formula, we have:

Nc J δ ACR =

Nc∑
i=1

J∑
j=1

δijβij =

Nc∑
i=1

J∑
j=1

δij (γ + γi + γj + γ̃ij)

= γ Nc J δ +
∑
i

γi
∑
j

δij +
∑
j

γj
∑
i

δij +
∑
i

∑
j

γ̃ijδij

= γ Nc J δ +
∑
i

γi J δi +
∑
j

γj Nc δj +
∑
i

∑
j

γ̃ijδij

= γ Nc J δ +
Nc

Nc
J
∑
i

γi δi +
J

J
Nc

∑
j

γj δj +
Nc J

Nc J

∑
i

∑
j

γ̃ijδij

= γ Nc J δ +Nc J (Cov(γi, δi) + Cov(γj , δj) + Cov(γ̃ij , δij))

Dividing through by Nc J δ, we have:

ACR− γ =
1

δ
(Cov(γi, δi) + Cov(γj , δj) + Cov(γ̃ij , δij)) (3)

To obtain Equation (3), we simply plug γ = CCE/J into the above.

C Identification of the CCE Without Homogeneity
This section explores the bounds on the CCE after relaxing Assumption 4, allowing for potential heterogeneity in the unit
causal effects among compliers.

C.1 Proof that the CCE is Unconstrained Under Assumptions 1-3
Let δij = 1{Di(1) ≥ j > Di(0)}. We begin by noting that the ACR can be written as

ACR =

N∑
i=1

J∑
j=1

δij βij

N∑
i=1

J∑
j=1

δij

=
1

δ

N∑
i=1

J∑
j=1

δij βij
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where δ =
N∑
i=1

J∑
j=1

δij . To see this, first note that P [Di(1) ≥ j > Di(0)] =
N∑
i=1

δij/N . Therefore,

wj =

N∑
i=1

δij

/ J∑
j′=1

N∑
i=1

δij′

Additionally, observe that

E[Yi(j)− Yi(j − 1) | Di(1) ≥ j > Di(0)] =

N∑
i=1

βijδij

N∑
i=1

δij

Putting the above together,

ACR =
J∑

j=1

wjE[Yi(j)− Yi(j − 1) | Di(1) ≥ j > Di(0)]

=
J∑

j=1

N∑
i=1

δij

J∑
j=1

N∑
i=1

δij

N∑
i=1

βijδij

N∑
i=1

δij

=

J∑
j=1

N∑
i=1

βijδij

J∑
j=1

N∑
i=1

δij

=
1

δ

N∑
i=1

J∑
j=1

δij βij

Rearranging, we get:

δ ACR =
N∑
i=1

J∑
j=1

δij βij (4)

Let Nc be the number of compliers, Nc :=
N∑
i=1

1(Di(1) > Di(0)).

CCE =
1

Nc

 N∑
i=1

J∑
j=1

1(Di(1) > Di(0))βij


=

1

Nc

 N∑
i=1

J∑
j=1

1(Di(1) > Di(0))
(
βij + βijδij − βijδij

)
=

1

Nc

 N∑
i=1

J∑
j=1

1(Di(1) > Di(0))βijδij +

N∑
i=1

J∑
j=1

1(Di(1) > Di(0))(1− δij)βij


=

1

Nc

 N∑
i=1

J∑
j=1

βijδij +

N∑
i=1

J∑
j=1

1(Di(1) > Di(0))(1− δij)βij


=

1

Nc

δ ACR+

N∑
i=1

J∑
j=1

1(Di(1) > Di(0))(1− δij)βij


where the last equality uses (4).

To see that the CCE is unbounded under assumptions 1-3, note that we can always increase (or decrease) βij arbitrarily
for any i and j pair with δij = 0 and Di(1) > Di(0), since these unit causal effects are unconstrained by the ACR or other
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observable moments. Therefore, as long as every single complier doesn’t move along the full length of the dose response
function, i.e., there exists some i for which Di(1) > Di(0) and either Di(1) < J or Di(0) > 0, the CCE is unbounded
absent additional assumptions.11

C.2 Bounded Unit Causal Effects
One approach to restricting the free unit-causal effects is to impose an additional assumption on the support of the unit-
causal effects, βij ∈

[
β, β

]
. Suppose that βij = β for all (i, j) pairs such that δij = 0. We can then express the CCE

(scaled by J) as a convex combination of the ACR and β:

CCE/J =

(
δ

J Nc

)
ACR+

(
1− δ

J Nc

)
β

where the weight on the ACR, δ
J Nc

, corresponds to the fraction of the maximum potential effect of the instrument that is
reflected in the ACR. We can therefore express the maximum CCE as

CCE =

(
δ

J Nc

)
J ACR+

(
1− δ

J Nc

)
J β

=
1

Nc

[
δ ACR+ (J Nc − δ)β

]
Analogously, the minimum CCE is

CCE =
1

Nc

[
δ ACR+ (J Nc − δ)β

]
.

Note that the width of these bounds is increasing in Nc, which is not point-identified by the data. The maximum value of
Nc, and hence the full range of CCE values consistent with the data, can be estimated based on the method described in
Huang et al. (2016).

D Identification of CCE with Multiple Instruments
In this section, we consider identification of the CCE in the presence of additional identifying variation in the form of
multiple instruments. Suppose there are K ≤ J mutually orthogonal binary instruments, Zk ∈ {0, 1}. Assume that
Assumption 1-3 are satisfied for each Zk. Angrist and Imbens (1995) show that using K orthogonal indicators as instru-
ments can equivalently be thought of as using a single K + 1 valued instrument, Zi ∈ {0, 1, ...,K}. Let {wk

j }Jj=1 and
ACRk be the weighting scheme and ACR corresponding to instrument dk = 1(Z = k) respectively. Angrist and Imbens
(1995) show that the K linearly independent dummy variables, dk = 1(Zi = k), can be used as instruments to identify
K linearly independent ACRs where

ACRk =
E[Y | Z = k]− E[Y | Z = 0]

E[D | Z = k]− E[D | Z = 0]

Recall that under Assumption 4 (homogeneity across complier types), we can re-write ACRk as

ACRk =
J∑

j=1

wk
j βj (5)

for each k = 1, ...,K. When K = J , we have a system of J equations with J unknowns. Under an assumption that this
system is full-rank, this allows for point-identification of each unit-causal effects, βj . Therefore, when K = J , one can

11If all compliers do move along the full length of the dose response function, the setting can be analyzed as involving a binary
treatment. In this case, the CCE is point-identified, and is equal to ACR× J .
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point-identify any function of the unit-causal effects including the CCE under Assumptions 1-4 and an additional full-
rank assumption (requiring that the instruments induce compliers to move across distinct regions of the dose-response
function).

Next, we consider identification in the case where K < J . In this case, we can use the additional identifying variation
available through the additional instruments to tighten the bounds on the CCE. Specifically, we can incorporate (5) as a
constraint in LP.1 and LP.2 for each k = 1, ..,K:

Maximize/Minimize
{βj}

J∑
j=1

βj LP.3

subject to
J∑

j=1

βjw
k
j = ACRk ∀k = 1, ...,K (C.1)

βj ≥ 0 ∀ j = 1, ..., J (C.2)

βj ≥ βj+1 ∀ j = 1, ..., J − 1 (C.3)

The extent to which incorporating additional instruments into the analysis will tighten the bounds on the CCE will depend
on the degree to which the additional instruments induce compliers to move across different portions of the treatment
dose response function. For example, if J = 2 and a first instrument primarily moves compliers from j = 0 to j = 1,
incorporating a second instrument will tend to tighten the estimate of the CCE if it primarily moves compliers from j = 1

to j = 2. In contrast, it will tend to provide less new information if it also primarily moves compliers from j = 0 to j = 1.

E Proof for Proposition 1
To establish that CCE ≥ ACR/wj , we will first show that CCE is minimized when βj is the only non-zero unit causal
effect, i.e., βj = 0 for all j ̸= j. Proceeding by contradiction, suppose instead that CCE was minimized by a vector
of unit treatment effects (β1, ..., βJ) with βk > 0 for some k ̸= j. Consider a new vector of unit treatment effects,
(β∗

1 , ..., β
∗
J) identical to the first, except that the specified non-zero effect has been set to zero, β∗

k = 0, and the unit effect
corresponding to the largest weight, βj , has been increased to maintain feasibility with respect to the ACR constraint:
β∗
j
= βj + βk wk/wj . But, with these changes, the value of the objective function is lower than that of the original vector

of unit effects: ∑
β∗
j −

∑
βj = βk

wk

wj

− βk < 0,

where the last inequality follows from Assumption 5 and the definition of j. Thus, the initial vector of unit treatment effects
must not be the solution to the constrained minimization problem, proving the contradiction. The proof that CCE ≤
ACR/wj is analogous. ■

F Proof for Proposition 2
To show that CCE ≥ ACR/w1, we will first show that the CCE is minimized when βj = 0 ∀ j > 1. Proceeding by
contradiction, suppose that the CCE is minimized by a vector of unit treatment effects (β1, ..., βJ) with βj > 0 for some
j > 1. Let k denote the highest intensity non-zero unit effect, more precisely k = max

j
{2, ..., J | βj > 0}. Along with

Assumption 6, this implies β1 ≥ β2 ≥ ... ≥ βk > 0. Consider a new vector of unit treatment effects, (β̃1, ..., β̃J), which
is identical to the first vector, except that βk has been set to zero, β̃k = 0, and the first unit effect has been increased to
maintain feasibility with respect to the ACR constraint: β̃1 = β1 + βkwk/w1. But, with these changes, the value of the

A.6



objective function is lower than that of the original vector of unit effects:∑
β̃j −

∑
βj = βk

wk

w1
− βk < 0,

where the last inequality follows from Assumptions 5 and 7. Thus, the initial vector of unit treatment effects must not
be the solution to the constrained minimization problem, proving the contradiction. Finally, to prove the result, note that
when βj = 0 ∀ j > 1, it follows that CCE =

∑
j βj = β1 = ACR/w1, where the last equality follows from the

definition of the ACR.
To show that CCE ≤ ACR × J , we will first show that the CCE is maximized when the unit causal effects are

equalized, i.e., when β1 = β2 = ... = βJ . Proceeding by contradiction, suppose that the CCE is maximized by a vector
of unit treatment effects (β1, β2, ..., βJ) with βk > βk+1 for some k ∈ {1, ..., J − 1} (concavity rules out the reverse
ordering). Consider a new vector of unit treatment effects, (β̃1, ..., β̃J), which is identical to the first vector, except that
β̃k = βk− (βk−βk+1)wk+1

wk+wk+1
and β̃k+1 = βk+1+

wk(βk−βk+1)
wk+wk+1

, so that β̃k = β̃k+1. Note that (β̃1, ..., β̃J) is a feasible solution
vector since it satisfies C.1-C.3. But, with these changes, the value of the CCE is higher than under that of the original
vector of the unit effects: ∑

β̃j −
∑

βj =
(βk+1 − βk)(wk+1 − wk)

wk+1 + wk
> 0,

where the last inequality follows from the assumption that βk > βk+1 (Assumption 6) and that wk > wk+1 (Assumption
7). Thus, the initial vector of unit treatment effects must not be the solution to the constrained maximization problem,
proving the contradiction. ■

G Sharpness of Identification Results
In this section, we prove that the bounds on the CCE in Proposition 1 and 2 are sharp, in the sense that all values of the
CCE in the identified sets in Propositions 1 and 2 are compatible with the assumptions and the data (e.g., Kline and Tamer,
2023).

The data we observe is the joint distribution of (Yi, Di, Zi). We will show that for identification of the CCE, the
relevant moments of the joint distribution are E[Y | D = j, Z = z] and P [D = j | Z = z] for j ∈ {0, 1..., J}
and z ∈ {0, 1}. Under the assumptions of instrument validity (Assumptions 1-3), we establish the relationship between
the unobserved joint distribution of Di(0) and Di(1) and the observed moments. Similarly, we show how the observed
moments constrain the relationship between the outcome and treatment dosage under Assumptions 1-3. Next, we posit a
dose-response relationship between the treatment and the outcome that attains the bounds in Propositions 1 and 2. We then
show that this relationship is consistent with the assumptions and the observed moments, thereby establishing sharpness
of our proposed bounds. We illustrate our argument in a simple example with three treatment levels (J = 2).

We begin by enumerating the relevant observed moments of the joint distribution of (Yi, Di, Zi). Let P [Di(0) =

m,Di(1) = n] ≡ πmn and E[Yi(j)|Di(0) = m,Di(1) = n] ≡ Ymn(j) for j,m, n ∈ {0, 1, ..., J}. Using this notation,
monotonicity (Assumption 3) implies πmn = 0 for all m,n with m > n. Imposing independence (Assumption 2), we
obtain the following constraints on the joint distribution of Di(0) and Di(1):

P [D = k | Z = 0] = P [D(0) = k | Z = 0] = P [D(0) = k] =

J∑
j=k

πkj (6)

P [D = k | Z = 1] = P [D(1) = k | Z = 1] = P [D(1) = k] =

k∑
j=0

πjk (7)

for each k ∈ {0, 1, ..., J}.
Relevance of the instrument (Assumption 1) implies that E[Di | Zi = 1]−E[Di | Zi = 0] =

∑J
j=1 P [Di(1) ≥ j >
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Di(0)] =
∑J

j=1

∑J
p=j

∑j−1
q=0 πqp > 0.

Turning to the relationship between the treatment dosage and the outcome, Ymn(m) and Ymn(n) are similarly con-
strained by the observed moments under independence and monotonicity (Assumptions 2-3):

E[Y | Z = 0, D = k]P [D = k | Z = 0] =
J∑

j=k

πkjYkj(k) (8)

E[Y | Z = 1, D = k]P [D = k | Z = 1] =
k∑

j=0

πjkYjk(k) (9)

for each k ∈ {0, 1, ..., J}.
Next, we show that while we observe the entire joint distribution of (Yi, Di, Zi), the only features of the distribution

that are relevant for identification of the CCE are E[Y |D = j, Z = z] and P (D = j | Z = z) for j ∈ {0, 1, ..., J} and
z ∈ {0, 1}. We show this by expressing the CCE under homogeneity (Assumption 4) as a function of the features of the
joint distribution of (Yi, Di, Zi) that are constrained by (6)-(9). Specifically, we show that the CCE can be expressed as
follows:

CCE =
1

P [D = J | Z = 1]− P [D = J | Z = 0]
×[

E[Y | Z = 1, D = J ]P [D = J | Z = 1]− E[Y | Z = 0, D = J ]P [D = J | Z = 0]

+ E[Y | Z = 1, D = 0]P [D = 0 | Z = 1]− E[Y | Z = 0, D = 0]P [D = 0 | Z = 0]

+
J−1∑
j=1

(
π0jY0j(0)− πjJYjJ(0)

)]

To see this, we start with the observed moment conditions (8) and (9) for D = 0 and D = J respectively:

E[Y | Z = 1, D = J ]P [D = J | Z = 1]− E[Y | Z = 0, D = 0]P [D = 0 | Z = 0]

=

J∑
j=0

πjJYjJ(J)−
J∑

j=0

π0jY0j(0)

= π0J

(
Y0J(J)− Y0J(0)

)
+

J∑
j=1

πjJYjJ(J)−
J−1∑
j=0

π0jY0j(0)

= π0JCCE + πJJYJJ(J)− π00Y00(0) +

J−1∑
j=1

(
πjJYjJ(J)− π0jY0j(0)

)

= π0JCCE + πJJYJJ(J)− π00Y00(0) +

J−1∑
j=1

(
πjJCCE + πjJYjJ(0)− π0jY0j(0)

)

=
( J∑

j=0

πjJ − πJJ

)
CCE + πJJYJJ(J)− π00Y00(0) +

J−1∑
j=1

(
πjJYjJ(0)− π0jY0j(0)

)
Plugging in moment conditions (6) and (7) for D = J , and moment conditions (8) and (9) for D = J and D = 0
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respectively, allows us to rewrite the above as

E[Y | Z = 1, D = J ]P [D = J | Z = 1]− E[Y | Z = 0, D = 0]P [D = 0 | Z = 0]

=
(
P [D = J | Z = 1]− P [D = J | Z = 0]

)
CCE

+ E[Y | Z = 0, D = J ]P [D = J | Z = 0]− E[Y | Z = 1, D = 0]P [D = 0 | Z = 1]

+

J−1∑
j=1

(
πjJYjJ(0)− π0jY0j(0)

)
Rearranging terms, we can re-write the CCE as follows,

CCE =
1

P [D = J | Z = 1]− P [D = J | Z = 0]
×[

E[Y | Z = 1, D = J ]P [D = J | Z = 1]− E[Y | Z = 0, D = J ]P [D = J | Z = 0]

+ E[Y | Z = 1, D = 0]P [D = 0 | Z = 1]− E[Y | Z = 0, D = 0]P [D = 0 | Z = 0]

+
J−1∑
j=1

(
π0jY0j(0)− πjJYjJ(0)

)]

This shows that the CCE is only a function of the features of the joint distribution of (Yi, Di, Zi) that are constrained by
(6)-(9).

G.1 Sharpness of Proposition 1
Recall that Proposition 1 shows that, under Assumptions 1-5, CCE ∈

[
ACR
wj

, ACR
wj

]
where j = argminj∈{1,...J}{wj}

and j = argmaxj∈{1,...J}{wj}. To simplify exposition, we additionally assume that the weights are monotonically
declining, so j = 1 and j = J ; the same logic extends to the case where this condition does not hold .12

Consider the following candidate relationship between the outcome and treatment dosage for all complier types:
Ymn(0) = Ymn(1) = ... = Ymn(J − 1) and Ymn(J)− Ymn(J − 1) = ACR/wJ for all n > m and m,n ∈ {0, 1, ..., J}.

We begin by showing that this candidate dose-response relationship is consistent with Assumptions 1-5. Since the
choice of the dose-response relationship does not affect the validity of the instrument, it is consistent with Assumptions
1-3. Assumption 4 imposes that the unit causal effects, Ymn(j)− Ymn(j − 1) are constant across all n > m and m,n ∈
{0, 1, ..., J}. Since we propose the same candidate dose-response relationship for all complier types, Assumption 4 is
satisfied by construction. It is also easy to see that the unit causal effects for all compliers, βj = Ymn(j) − Ymn(j − 1)

are non-negative, satisfying Assumption 5.
Next, we show that this candidate dose-response relationship attains the maximum value of the CCE in Proposition 1.

Under Assumption 4, the CCE can be written as Ymn(J)− Ymn(0) for any n > m and m,n ∈ {0, 1, ..., J} (i.e., for any
complier). Adding and subtracting Ymn(J − 1), we have CCE = Ymn(J) − Ymn(J − 1) + Ymn(J − 1) − Ymn(0) =

ACR/wJ , where the final equality follows from the fact that Ymn(J − 1) = Ymn(0) under the candidate dose response
function. This shows that the candidate dose-response relationship attains the maximum value in Proposition 1.

To show that the upper bound in Proposition 1 is sharp, it remains to show that the candidate dose-response relationship
is consistent with the observable moments. We prove this by showing that there exists a vector of unobserved potential
outcomes that satisfies Equations (6)-(9) under the candidate dose-response relationship. We begin by plugging in the

12If set of weights {wj} are not monotonically declining, the dose-response relationship that would attain the bounds in Proposition
1 would maximize the unit effect at the range of the dose response function where the weight is smallest. The remainder of the proof
would follow similarly.
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dose-response relationship Ymn(0) = Ymn(k) for k ∈ {1, ..., J − 1} in (8) and (9):

E[Y | Z = 0, D = k]P [D = k | Z = 0] = πkkYkk(k) +
J∑

j=k+1

πkjYkj(0)

E[Y | Z = 1, D = k]P [D = k | Z = 1] = πkkYkk(k) +
k−1∑
j=0

πjkYjk(0)

For k = 0 in (9),

E[Y | Z = 1, D = 0]P [D = 0 | Z = 1] = π00Y00(0)

Plugging the above into (8) for k = 0,

E[Y | Z = 0, D = 0]P [D = 0 | Z = 0]− E[Y | Z = 1, D = 0]P [D = 0 | Z = 1] =
J∑

j=1

π0jY0j(0)

For k = J in (8),

E[Y | Z = 0, D = J ]P [D = J | Z = 0] = πJJYJJ(J)

Plugging the above into (9) for k = J ,

E[Y | Z = 1, D = J ]P [D = J | Z = 1]− E[Y | Z = 0, D = J ]P [D = J | Z = 0] =
J−1∑
j=0

πjJYjJ(J)

Next, plugging in the dose-response relationship, YjJ(J) = ACR/wJ + YjJ(0), into the above equation yields the
following:

E[Y | Z = 1, D = J ]P [D = J | Z = 1]−E[Y | Z = 0, D = J ]P [D = J | Z = 0]

=
ACR

wJ

J−1∑
j=0

πjJ

+

J−1∑
j=0

πjJYjJ(0)

Together, this yields the following system of 2J equations:

E[Y | Z = 0, D = k]P [D = k | Z = 0] = πkkYkk(k) +
J∑

j=k+1

πkjYkj(0) for k = 1, ..., J − 1

E[Y | Z = 1, D = k]P [D = k | Z = 1] = πkkYkk(k) +

k−1∑
j=0

πjkYjk(0) for k = 1, ..., J − 1

E[Y | Z = 0, D = 0]P [D = 0 | Z = 0]− E[Y | Z = 1, D = 0]P [D = 0 | Z = 1] =
J∑

j=1

π0jY0j(0)

E[Y | Z = 1, D = J ]P [D = J | Z = 1]− E[Y | Z = 0, D = J ]P [D = J | Z = 0]

=
ACR

wJ

J−1∑
j=0

πjJ

+

J−1∑
j=0

πjJYjJ(0)
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In this system of equations, Ymn(0) is unknown for all n > m and m,n ∈ {0, 1, ..., J}. Additionally, Ykk(k) is unknown
for all k ∈ {1, ..., J − 1}. Together, this implies that there are J(J+1)

2 + J − 1 unknowns. For all J ≥ 2, this implies that
there are at least as many unknown potential outcomes as there are equations, and so there is at least 1 vector of unknown
potential outcomes that satisfies this set of equations.

Together, this shows that the upper bound for the CCE in Proposition 1 can be attained under a dose-response rela-
tionship between the treatment and the outcome that is consistent with the assumptions and the data. This establishes that
the bounds in Proposition 1 are sharp. The proof for the lower bound is symmetric.

G.2 Sharpness of Proposition 2
Recall that Proposition 2 shows that, under Assumptions 1-7, the CCE is bounded above by ACR×J and bounded below
by ACR/w1. Below, we provide a proof for the sharpness of the upper bound. The proof that the lower bound is sharp is
symmetric to the proof in Proposition 1.

Consider the following relationship between the outcome and treatment dosage for all complier types: Ymn(j) −
Ymn(j − 1) = ACR for all j ∈ {1, ..., J} and all n > m.

We begin by showing that this candidate dose-response relationship is consistent with Assumptions 1-6. Since the
choice of the dose-response relationship does not affect the validity of the instrument, it is consistent with Assumptions
1-3. Assumption 4 imposes that the unit causal effects, Ymn(j)− Ymn(j − 1) are constant across all n > m and m,n ∈
{0, 1, ..., J}. Since we propose the same candidate dose-response relationship for all complier types, Assumption 4 is
satisfied by construction. It is also easy to see that the unit causal effects for all compliers, Ymn(j)−Ymn(j−1) = ACR are
non-negative, satisfying Assumption 5. Assumption 6 imposes that the dose-response relationship between the treatment
and outcome is (weakly) concave, i.e., Ymn(j) − Ymn(j − 1) ≥ Ymn(j + 1) − Ymn(j) for all j ∈ {1, 2, ..., J − 1}.
The candidate dose-response relationship we specify is such that Ymn(j)− Ymn(j − 1) = Ymn(j + 1)− Ymn(j) for all
j ∈ {1, 2, ..., J − 1}, and is therefore compatible with Assumption 6.

Next, we show that the candidate dose-response relationship attains the maximum value of the CCE in Proposition 2.
Under Assumption 4, the CCE can be written as

∑J
j=1 Ymn(j) − Ymn(j − 1) for any n > m and m,n ∈ {0, 1, ..., J}.

Plugging in Ymn(j)−Ymn(j−1) = ACR, we obtain thatCCE = ACR×J . This shows that our candidate dose-response
relationship attains the maximum value in Proposition 2.

To show that the upper bound in Proposition 2 is sharp, it remains to show that the candidate dose-response relationship
is consistent with the observable moments. We prove this by showing that there exists a vector of unobserved potential
outcomes that satisfies Equations (6)-(9) under the specified dose-response relationship.

We begin by plugging in the dose-response relationship Ymn(k) = Ymn(0) +ACR× k for k ∈ {1, ..., J − 1} in (8)
and (9):

E[Y | Z = 0, D = k]P [D = k | Z = 0] = πkkYkk(k) +

J∑
j=k+1

πkj

(
Ykj(0) +ACR× k

)

E[Y | Z = 1, D = k]P [D = k | Z = 1] = πkkYkk(k) +

k−1∑
j=0

πjk

(
Yjk(0) +ACR× k

)
For k = 0 in (9),

E[Y | Z = 1, D = 0]P [D = 0 | Z = 1] = π00Y00(0)

Plugging in the above into (8) for k = 0,

E[Y | Z = 0, D = 0]P [D = 0 | Z = 0]− E[Y | Z = 1, D = 0]P [D = 0 | Z = 1] =

J∑
j=1

π0jY0j(0)
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For k = J in (8),

E[Y | Z = 0, D = J ]P [D = J | Z = 0] = πJJYJJ(J)

Plugging in the above into (9) for k = J ,

E[Y | Z = 1, D = J ]P [D = J | Z = 1]− E[Y | Z = 0, D = J ]P [D = J | Z = 0] =
J−1∑
j=0

πjJYjJ(J)

Next, plugging in the dose-response relationship, YjJ(J) = ACR × J + YjJ(0), into the above equation yields the
following:

E[Y | Z = 1, D = J ]P [D = J | Z = 1]− E[Y | Z = 0, D = J ]P [D = J | Z = 0] =

J−1∑
j=0

πjJ

(
YjJ(0) +ACR× J

)
Together, this yields the following system of 2J equations:

E[Y | Z = 0, D = k]P [D = k | Z = 0] = πkkYkk(k) +

J∑
j=k+1

πkj

(
Ykj(0) +ACR× k

)
for k = 1, ..., J − 1

E[Y | Z = 1, D = k]P [D = k | Z = 1] = πkkYkk(k) +

k−1∑
j=0

πjk

(
Yjk(0) +ACR× k

)
for k = 1, ..., J − 1

E[Y | Z = 0, D = 0]P [D = 0 | Z = 0]− E[Y | Z = 1, D = 0]P [D = 0 | Z = 1] =
J∑

j=1

π0jY0j(0)

E[Y | Z = 1, D = J ]P [D = J | Z = 1]− E[Y | Z = 0, D = J ]P [D = J | Z = 0] =

J−1∑
j=0

πjJ

(
YjJ(0) +ACR× J

)
In this system of equations, Ymn(0) is unknown for all n > m and m,n ∈ {0, 1, ..., J}. Additionally, Ykk(k) is unknown
for all k ∈ {1, ..., J − 1}. Together, this implies that there are J(J+1)

2 + J − 1 unknowns. For all J ≥ 2, this implies that
there are at least as many unknown potential outcomes as there are equations, and so there is at least 1 vector of unknown
potential outcomes that satisfies this set of equations.

Together, this shows that the upper bound for the CCE in Proposition 2 can be attained under a dose-response rela-
tionship between the treatment and the outcome that is consistent with the assumptions and the data. The proof for the
lower bound follows the same logic as Section G.1.13

G.3 Illustration
In this section, we illustrate the sharpness of the Proposition 1 bounds in the simple case where J = 2.

Assume the same candidate dose-response relationship as considered in Section G.1, Ymn(0) = Ymn(1) andYmn(2) =

ACR/w2 for all n > m. We showed that this dose-response relationship attains the upper bound of the CCE provided in
Proposition 1 and is consistent with Assumptions 1-5. Here, we provide a vector of the unknown potential outcomes that
is consistent with (6)-(9) to illustrate the sharpness of the provided bounds. Re-writing Equations (8) and (9) using the

13The dose-response relationship under which the lower bound is attained is given by Ymn(1)−Ymn(0) = ACR/w1 and Ymn(1) =
... = Ymn(J) for all n > m. In addition to the proof in Section G.1, one only needs to show that this dose-response relationship is
also consistent with Assumption 6. This is easy to see, since β1 = ACR/w1 > 0 = βj for all j > 1.
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specified dose-response relationship, as in Section G.1:

E[Y | Z = 0, D = 1]P [D = 1 | Z = 0] = π11Y11(1) + π12Y12(0)

E[Y | Z = 1, D = 1]P [D = 1 | Z = 1] = π11Y11(1) + π01Y01(0)

E[Y | Z = 1, D = 2]P [D = 2 | Z = 1]− E[Y | Z = 0, D = 2]P [D = 2 | Z = 0] =

ACR

wJ

(
π02 + π12

)
+ π02Y02(0) + π12Y12(0)

E[Y | Z = 0, D = 0]P [D = 0 | Z = 0]− E[Y | Z = 1, D = 0]P [D = 0 | Z = 1] = π01Y01(0) + π02Y02(0)

The vector of unknowns here is π01Y01(0), π02Y02(0), π11Y11(1), and π12Y12(0). Assume the following values of the
unknown potential outcomes:

π01Y01(0) = E[Y | Z = 1, D = 1]P [D = 1 | Z = 1]− E[Y | Z = 0, D = 1]P [D = 1 | Z = 0]

π02Y02(0) = E[Y | Z = 1, D = 2]P [D = 2 | Z = 1]− E[Y | Z = 0, D = 2]P [D = 2 | Z = 0]− ACR

wJ

(
π02 + π12

)
π11Y11(1) = E[Y | Z = 0, D = 1]P [D = 1 | Z = 0]

π12Y12(0) = 0

It is easy to see simply by plugging in the assumed values of the unknown potential outcomes that this vector of unknowns
satisfies the first three of the four moment conditions shown above. It remains to show that

E[Y | Z = 0, D = 0]P [D = 0 | Z = 0]− E[Y | Z = 1, D = 0]P [D = 0 | Z = 1] = π01Y01(0) + π02Y02(0)

⇔ ACR

wJ
=

1

π02 + π12
×

(
2∑

j=0

E[Y | Z = 1, D = j]P [D = j | Z = 1]− E[Y | Z = 0, D = j]P [D = j | Z = 0]

)

Using the law of total probability, the numerator on the RHS may be written asE[Y | Z = 1]−E[Y | Z = 0]. Next, it can
be seen that π02 + π12 = P [Di(1) ≥ 2 > Di(0)]. Dividing the numerator and denominator by the first stage, we obtain
that the RHS is equal to ACR/wJ . This shows that the assumed values of the unknown potential outcomes are consistent
with the observed moments and assumptions, and they attain the upper bound on the CCE provided in Proposition 1.

H Identification of CCE with Additional Boundedness Assumptions
This section considers bounds for the CCE under Assumptions 1-5, when either the unit causal effects or the support of
the outcome are known to be bounded.

H.1 Bounded Unit Causal Effects with Homogeneity
We first consider the additional assumption that the unit causal effects are bounded from above, i.e., βj ∈ [0, β]. We are
interested in solving the following linear program:

Maximize/Minimize
{βj}

J∑
j=1

βj LP.4

subject to
J∑

j=1

βjwj = ACR (C.1)

βj ≥ 0 (C.2)

βj ≤ β (C.3)

For ease of notation, we assume that the weights are monotonically declining (Assumption 7).
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Beginning with the upper bound, define ju = max{1, ..., J} such that
J∑

j=ju

wj ≥ ACR
β

. Note that ju is well-defined

under our assumptions; if not, it would imply ACR > β
∑J

j=1 wj = β. Because the ACR is a weighted average of
unit causal effects, all of which are bounded above by β, this is impossible. Therefore, ju must be well-defined. Next,
consider the case in which ju = J , which is obtained when wJ ≥ ACR

β
, or equivalently, β ≥ ACR

wJ
. In this case, the

vector of unit-causal effects that attain the bounds in the absence of C.3 (as shown in Proposition 1) are still feasible, since
β ≥ ACR

wJ
= βJ and β > ACR

w1
= β1. Therefore, in the case that ju = J , C.3 does not bind and LP.4 collapses into the

case studied in Proposition 1.
The other possibility is that ju ∈ {1, ..., J − 1}. To find an upper bound for the CCE in this case, we will first show

that the CCE is maximized when βj = β for all j > ju and βj = 0 for all j < ju.
To prove βj = β for all j > ju, assume towards a contradiction that the CCE is maximized subject to C.1-C.3 by a

vector of unit causal effects β = (β1, ..., βJ) where βk1 < β for some k1 > ju. Observe that, by construction of ju, we
have:

β <
ACR
J∑

j=ju+1
wj

=⇒
J∑

j=ju+1

βwj < ACR =
J∑

j=1

βj wj

where the last equality follows from C.1. Because βj ≤ β for all j, this implies that there must exist a k ≤ ju such that
wk > 0 and βk > 0. We assume without loss of generality that there is only one such non-zero unit-causal effect for
k ≤ ju.14 Consider a new vector of unit causal effects β∗ = (β∗

1 , ..., β
∗
J) equal to β, except that β∗

k = βk − (β − βk1)
wk1
wk

and β∗
k1

= β. Note that β∗ satisfies C.1-C.3. Comparing the CCE under β∗ and β:

J∑
j=1

β∗
j −

J∑
j=1

βj =
(
β∗
k − βk

)
+
(
β∗
k1 − βk1

)
= −

(
β − βk1

) wk1

wk
+
(
β − βk1

)
=
(
β − βk1

)(
1− wk1

wk

)
> 0

where the final inequality follows since wk1
wk

< 1. Thus, the initial vector of unit treatment effects must not be the solution
to the constrained maximization problem, proving that the CCE is maximized only when βj = β for all j > ju.

To prove βj = 0 for all j < ju, assume towards a contradiction that the CCE is maximized by a vector of unit causal
effects β = (β1, ..., βJ) where βk2 > 0 for some k2 < ju. Because β maximizes the CCE, we know from above that
βj = β for all j > ju. Consider a new vector of unit treatment effects, β∗ = (β∗

1 , ..., β
∗
J), identical to β except that the

specified non-zero effect has been set to zero, β∗
k2

= 0, and βju has been increased to maintain feasibility with respect to
the ACR constraint: β∗

ju
= βju + βk2 wk2/wj′ . For it to be feasible to increase βju in this way, we need that β∗

ju
≤ β.

This follows from the construction of ju:

ACR
J∑

j=ju

wj

≤ β ⇐⇒
ACR−

J∑
j=ju+1

wjβ

wju

≤ β

14This is without loss of generality because we can always re-define the problem with βk being a weighted average of all non-zero
unit causal effects. For instance, if βp, βq > 0 for p, q ≤ ju, we could re-define βk =

βpwp+βqwq

wp+wq
and wk = wp + wq .
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To see this, note that

ACR−
J∑

j=ju+1
wjβ

wju

=

ju∑
j=1

wjβj

wju

=
wjuβju + wk2βk2

wju

= βju +
wk2βk2
wju

= β∗
ju ≤ β

where the first equality follows from the ACR constraint, the second equality follows from our assumption that βk is the
only non-zero unit causal effect for k < ju, the fourth equality follows from our definition of β∗

ju
. But with these changes,

the value of the objective function is higher than that of the original vector of unit effects:∑
β∗
j −

∑
βj = βk

wk

wju

− βk > 0,

where the last inequality follows from the fact that wk
wju

> 1. Thus, the initial vector of unit treatment effects must not
be the solution to the constrained maximization problem. Together, this implies that the CCE is maximized only when
βj = β for all j > ju and βj = 0 for all j < ju. The constraint C.1 pins down the value for βju and implies that the upper
bound on the CCE is

ACR

wju

− β

J∑
j=ju+1

wj

wju

+ (J − ju)β

Turning to the lower bound, define jl = min{1, ..., J} such that
jl∑

j=1
wj ≥ ACR

β
. Note that jl is well-defined under

our assumptions; if not, it would imply ACR > β
∑J

j=1 wj = β. Because the ACR is a weighted average of unit causal
effects, all of which are bounded above by β, this is impossible. Therefore, jl must be well-defined. Next, consider the
case in which jl = 1, which is obtained when w1 ≥ ACR

β
, or equivalently, β ≥ ACR

w1
. In this case, the vector of unit-causal

effects that attain the lower bounds in the absence of C.3 (as shown in Proposition 1) is still feasible, since β ≥ ACR
w1

= β1.
Therefore, in the case that jl = 1, C.3 does not bind and LP.4 collapses into the case studied in Proposition 1. The other
possibility is that jl ∈ {2, ..., J}. The CCE is minimized when βj = β for all j < jl and βj = 0 for all j > jl. The
constraint C.1 pins down the value for βjl and implies that the lower bound on the CCE is

ACR

wjl

− β

jl−1∑
j=1

wj

wjl

+ (jl − 1)β

The derivation for the lower bound is analogous to the proof for the upper bound.

H.2 Bounded Outcomes with Homogeneity
In this subsection, we consider bounds on the CCE under Assumptions 1-5 in the case that the outcome has bounded
support between known values, Yi ∈

[
Y , Y

]
.

Let P [Di(0) = m,Di(1) = n] ≡ πmn and E[Yi(j)|Di(0) = m,Di(1) = n] ≡ Ymn(j) for j,m, n ∈ {0, 1, ..., J}. In
Appendix Section G, we establish how the observed moments constrain the relationship between the outcome and treatment
dosage as well as the relationship between the unobserved joint distribution of Di(0) and Di(1) and the observed moments
under Assumptions 1-3. Here, we incorporate the moment conditions as constraints in the following optimization problem.
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For any m,n ∈ {0, 1, ..., J} and n > m:

Maximize/Minimize
{Yjk(d),πjk}J

j,k,d=0

Ymn(J)− Ymn(0) LP.5

subject to Ymn(j)− Ymn(j − 1) ≥ 0 (C.1)
J∑

j=k

πkj = P [D = k | Z = 0] for all k ∈ {0, 1, ..., J} (C.2)

k∑
j=0

πjk = P [D = k | Z = 1] for all k ∈ {0, 1, ..., J} (C.3)

J∑
j=k

πkjYkj(k) = E[Y | Z = 0, D = k]P [D = k | Z = 0] for all k ∈ {0, 1, ..., J} (C.4)

k∑
j=0

πjkYjk(k) = E[Y | Z = 1, D = k]P [D = k | Z = 1] for all k ∈ {0, 1, ..., J} (C.5)

Yjk(d) ∈
[
Y , Y

]
for all j, k, d ∈ {0, 1, ..., J} (C.6)

Absent C.6, LP.5 simplifies to the case studied in Proposition 1. As shown in Appendix G, the bounds in Proposition
1 are sharp under C.1 through C.5 and the data available to the researcher. Adding C.6 allows us to tighten the bounds
described in that Proposition. In particular, one implication of C.6 is that the magnitude of each unit causal effect does
not exceed Y − Y . Hence, the bounds described in Appendix H.1 are valid for LP.5, with β = Y − Y . However, this
restriction does not necessarily exploit all of the information contained in C.6; C.6 also provides information concerning
the level of the potential outcomes, which is not reflected in constraints relating to the magnitude of the treatment effect.
As such, directly solving LP.5 may yield tighter bounds compared to the bounds described in Appendix H.1.

I Identification of Related Parameters
Thus far, we have focused on identification of the effect of moving from the treatment’s minimum intensity to the treat-
ment’s maximum intensity. In this section, we explore identification of a broader class of parameters. Specifically, we
consider identification of the effect among compliers of moving from treatment intensity j1 to j2 where j1, j2 ∈ {0, 1, ..J}
and j1 < j2. We refer to this as the Complier Effect (CE) for j1 to j2: CE(j1, j2) = E[Yi(j2)− Yi(j1)|Di(1) > Di(0)].
Under Assumption 4, the unit-causal effects are homogeneous across different types of compliance subgroups. Specif-
ically, Assumption 4 requires that E[Yi(j2) − Yi(j1)|Di(1) > Di(0)] = E[Yi(j2) − Yi(j1)|Di(1) = j2, Di(0) = j1].

Therefore, we may re-write CE(j1, j2) as CE(j1, j2) = E[Yi(j2)− Yi(j1)|Di(1) = j2, Di(0) = j1] =
j2∑

j=j1+1
βj . In the

special case where j1 = 0 and j2 = J ,

CE(0, J) = CCE = E[Yi(J)− Yi(0)|Di(1) = J,Di(0) = 0] =

J∑
j=1

βj
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I.1 Proposition 1
We begin by asking what may be identified for CE(j1, j2) under Assumptions 1-5. As in Section 4, we cast the problem
of identifying CE(j1, j2) as the following linear optimization problem:

Maximize/Minimize
{βj}

j2∑
j=j1+1

βj LP.6

subject to
J∑

j=1

βjwj = ACR (C.1)

βj ≥ 0 ∀ j = 1, ..., J (C.2)

In this section, we extend Proposition 1 and show the following:15

Proposition 1∗: Let j(j1, j2) = argminj∈{j1+1,...,j2}{wj} and j(j1, j2) = argmaxj∈{j1+1,...,j2}{wj}. Under As-
sumptions 1-5, the following sharp bounds hold:

CE(0, J) = CCE ∈

[
ACR

wj(0,J)

,
ACR

wj(0,J)

]

and for (j1, j2) ̸= (0, J)

CE(j1, j2) ∈

[
0 ,

ACR

wj(j1,j2)

]
.

Proof: We begin by showing that CE(j1, j2) is minimized at 0, for any (j1, j2) ̸= (0, J). Recall that, under Assump-

tion 5, βj ≥ 0. This implies that CE(j1, j2) is always bounded below at 0 for all j1, j2: CE(j1, j2) =
j2∑

j=j1+1
βj ≥ 0.

Next, we show that for any (j1, j2) ̸= (0, J), we cannot rule out that CE(j1, j2) takes on a value 0. Consider the case
where j1 = 0. This implies that j2 ≤ J − 1. Define k such that j2 < k ≤ J . Then, constraint (C.1) may be satisfied

with βk = ACR
wk

and βj = 0 for all j ̸= k. This implies that
j2∑

j=j1+1
βj = 0 and shows that CE(j1, j2) is minimized at 0.

Similarly, consider the case where j1 ̸= 0. Define k such that 0 ≤ k < j1. Then, constraint (C.1) may be satisfied with
βk = ACR

wk
and βj = 0 for all j ̸= k. This shows that the CE(j1, j2) is minimized at 0, for any (j1, j2) ̸= (0, J). This

shows that CE(j1, j2) is minimized at 0 for any (j1, j2) ̸= (0, J).
Next, we show that CE(j1, j2) is maximized at ACR

wj(j1,j2)
where j(j1, j2) = argminj∈{j1+1,...,j2}{wj}. To establish

that CE(j1, j2) is bounded above by ACR
wj(j1,j2)

, we will first show that the CE(j1, j2) is maximized if and only if βj = 0

for all j < j1 and j > j2 and then show that CE(j1, j2) is maximized when βj(j1,j2) is the only non-zero unit causal
effect, i.e., βj = 0 for all j ̸= j(j1, j2).

Proceeding by contradiction to show the first step, suppose instead that CE(j1, j2) was maximized by a vector of unit
treatment effects (β1, ..., βJ) with βk > 0 for some k < j1 or k > j2. Consider a new vector of unit treatment effects,
(β∗

1 , ..., β
∗
J) identical to (β1, ..., βJ), except that the specified non-zero effect has been set to zero, β∗

k = 0, and the unit
effect corresponding to the smallest weight, βj(j1,j2), has been increased to maintain feasibility with respect to the ACR
constraint: β∗

j(j1,j2)
= βj(j1,j2) + βk wk/wj(j1,j2). But, with these changes, the value of the objective function is larger

15In this proposition, we assume wk > 0 for at least one k ≤ j1 or k > j2. If wk = 0 for all k ≤ j1 and k > j2, then the lower
bound on CE(j1, j2) would be the same as the lower bound on the CCE.
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than that of the original vector of unit effects:

j2∑
j=j1+1

β∗
j −

j2∑
j=j1+1

βj = βk
wk

wj(j1,j2)
> 0

where the final inequality follows by the assumption that βk > 0.
Proceeding similarly by contradiction to show the second step, suppose instead that CE(j1, j2) was maximized by a

vector of unit treatment effects (β1, ..., βJ) with βk > 0 for some k ̸= j(j1, j2) and j1 ≤ k ≤ j2. Consider a new vector
of unit treatment effects, (β∗

1 , ..., β
∗
J) identical to (β1, ..., βJ), except that the specified non-zero effect has been set to zero,

β∗
k = 0, and the unit effect corresponding to the smallest weight, βj(j1,j2), has been increased to maintain feasibility with

respect to the ACR constraint: β∗
j(j1,j2)

= βj(j1,j2) + βk wk/wj(j1,j2). But, with these changes, the value of the objective
function is larger than that of the original vector of unit effects:

j2∑
j=j1+1

β∗
j −

j2∑
j=j1+1

βj = βk
wk

wj(j1,j2)
− βk > 0,

where the last inequality follows from the fact that βk > 0 and the definition of j(j1, j2). Thus, the initial vector of unit
treatment effects must not be the solution to the constrained maximization problem, proving the contradiction. This shows
that CE(j1, j2) is maximized at ACR

wj(j1,j2)
for any (j1, j2) ̸= (0, J). Finally, we note that one can use the same argument

as in Appendix Section G to establish that these bounds are sharp.

I.2 Proposition 2
We consider identification for CE(j1, j2) under Assumptions 1-7. As in Section 4, we may cast the problem of identifying
CE(j1, j2) as the following linear optimization problem:

Maximize/Minimize
{βj}

j2∑
j=j1+1

βj LP.7

subject to
J∑

j=1

βjwj = ACR (C.1)

βj ≥ 0 ∀ j = 1, ..., J (C.2)

βj ≥ βj+1 ∀ j = 1, ..., J − 1 (C.3)

In this section, we extend Proposition 2 to show the following.
Proposition 2∗: Under Assumptions 1-7, the following sharp bounds hold: CCE ∈

[
ACR
w1

, ACR× J
]
.

(a) When j1, j2 ∈ {0, 1, ..., J} where j2 > j1, CE(j1, j2) ≤ ACR∑j2
j=1 wj

× (j2 − j1)

(b) When j1, j2 ∈ {1, ..., J} where j2 > j1, CE(j1, j2) ≥ 0

(c) When j1 = 0 and j2 ∈ {1, ..., J} where j2 ≥ 1
w1

, CE(0, j2) ≥ ACR
w1

(d) When j1 = 0 and j2 ∈ {1, ..., J} where j2 < 1
w1

, CE(0, j2) ≥ ACR× j2

Proof: We begin with the proof of Proposition 2∗(a) and show that the CE(j1, j2) is maximized at ACR
j2∑
j=1

wj

× (j2− j1).

We proceed in three steps. First, we show that CE(j1, j2) is maximized when βj = 0 for all j > j2. In the second step,
we show that the CE(j1, j2) is maximized when βj1+1 = ... = βj2 . Finally, we show that it is only maximized when
β1 = ... = βj1+1.
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Proceeding by contradiction for the first step, suppose that CE(j1, j2) is maximized subject to constraints (C.1)-(C.3)
by a vector of unit effects β = (β1, β2, ..., βJ) with βk > 0 for some k > j2. Consider a new vector of unit treatment
effects, β̃ = (β̃1, β̃2, ..., β̃J), where β̃j = βj +

wkβk
wjj2

for all j ≤ j2 and β̃k = 0. To see that β̃ satisfies (C.1),

J∑
j=1

β̃jwj =

j2∑
j=1

β̃jwj =

j2∑
j=1

(
βj +

wkβk
wjj2

)
wj =

j2∑
j=1

βjwj +

j2∑
j=1

wkβk
j2

=

j2∑
j=1

βjwj + wkβk = ACR

where the first equality follows from the fact that β̃j = 0 for all j > j2 and the final equality follows by the assumption that
the vector of unit effects β satisfies C.1. Additionally, β̃ satisfies C.2 since βj ≥ 0 for all j implies that β̃j = βj+

wkβk
wjj2

≥ 0.
Finally, C.3 is satisfied since βj ≥ βj+1 implies that βj +

∑j2
j=1

wkβk
wjj2

≥ βj+1 +
∑j2

j=1
wkβk
wjj2

=⇒ β̃j ≥ β̃j+1. Finally,
comparing the objective functions under the two vectors of unit effects,

j2∑
j=j1+1

β̃j −
j2∑

j=j1+1

βj =

j2∑
j=j1+1

wkβk
wjj2

≥ 0

where the last inequality follows by the assumption that βk > 0. This shows that CE(j1, j2) is maximized when βj = 0

for all j > j2.
Second, we show that the CE(j1, j2) is maximized when βj1+1 = ... = βj2 . Proceeding by contradiction, suppose

that the CE(j1, j2) is maximized by a vector of unit treatment effects (β1, β2, ..., βJ) with βk > βk+1 for some k ∈
{j1+1, ..., j2−1} (concavity rules out the reverse ordering). Consider a new vector of unit treatment effects, (β̃1, ..., β̃J),
which is identical to the first vector, except that β̃k = βk − (βk−βk+1)wk+1

wk+wk+1
and β̃k+1 = βk+1 +

wk(βk−βk+1)
wk+wk+1

, so that
β̃k = β̃k+1. Note that (β̃1, ..., β̃J) is a feasible solution vector since it satisfies C.1-C.3. But, with these changes, the value
of the objective function is higher than that of the original vector of the unit effects:

j2∑
j=j1+1

β̃j −
j2∑

j=j1+1

βj =
(βk+1 − βk)(wk+1 − wk)

wk+1 + wk
> 0,

where the last inequality follows from the assumption that βk > βk+1 (Assumption 6) and that wk > wk+1 (Assumption
7). Thus, the initial vector of unit treatment effects must not be the solution to the constrained maximization problem,
proving the contradiction. This shows that the CE(j1, j2) is maximized when βj1+1 = ... = βj2 .

Finally, we show that CE(j1, j2) is maximized when β1 = ... = βj1+1. Proceeding by contradiction, suppose that
CE(j1, j2) is maximized by a vector of unit effects β = (β1, β2, ...βJ) where βj = 0 for all j > j2 and βj = βj+1 for all
j ≤ j2 except j = k for some k ∈ {1, 2, ..., j1}. This implies that βk > βk+1 (concavity rules out the reverse ordering).
We can re-write (C.1) under the vector β as:

J∑
j=1

βjwj =

j2∑
j=1

βjwj =

k∑
j=1

βjwj +

j2∑
j=k+1

βjwj =
k∑

j=1

βkwj +

j2∑
j=k+1

βj1+1wj = ACR

where the first equality follows the assumption that βj = 0 for all j > j2 and the third equality follows from the assumption
that βj = βk for all j ≤ k and βj = βj1+1 for all j ∈ {k + 1, ..., j2}.

Define w̃k =
k∑

j=1
wj and w̃j1+1 =

j2∑
j=k+1

wj . Then, βkw̃k + βj1+1w̃j1+1 = ACR.

Consider a new vector of unit treatment effects, (β̃1, ..., β̃J), with β̃k = βk −
(βk−βj1+1)w̃j1+1

w̃k+w̃j1+1
and β̃j1+1 = βj1+1 +

w̃k(βk−βj1+1)

w̃k+w̃j1+1
, so that β̃k = β̃j1+1. Note that (β̃1, ..., β̃J) is a feasible unit vector since it satisfies C.1-C.3. But, with these
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changes, the value of the objective function is higher than that of the original vector of the unit effects:

j2∑
j=j1+1

β̃j −
j2∑

j=j1+1

βj =
w̃k(βk − βj1+1)

w̃k + w̃j1+1
> 0,

where the last inequality follows from the assumption that βk > βk+1 = βj1+1. This shows that CE(j1, j2) is maximized
when β1 = ... = βj2 .

Finally, using the ACR constraint, this implies that

J∑
j=1

βjwj =

j2∑
j=1

βjwj = ACR =⇒ βj =
ACR∑j2
j=1wj

Using the above, we can re-write CE(j1, j2) as

CE(j1, j2) =

j2∑
j=j1+1

βj =

j2∑
j=j1+1

ACR∑j2
j=1wj

=
ACR(j2 − j1)∑j2

j=1wj

Next, we prove Proposition 2∗(b) and show that CE(j1, j2) is minimized at 0 for any j1 > 0. Recall that under As-

sumption 5, βj ≥ 0 for all j. This implies that CE(j1, j2) is bounded below at 0 for any j1, j2, CE(j1, j2) =
j2∑

j=j1+1
βj ≥

0. Next, we show that for any j1 > 0, we cannot rule out that CE(j1, j2) takes on a value of 0. The constraint (C.1) may be
satisfied with β1 =

ACR
w1

and βj = 0 for all j > 1. Note that this vector of unit effects (β1, β2, ..., βJ) =
(
ACR
w1

, 0, ..., 0
)

also satisfies Constraint (C.2) and (C.3) since β1 = ACR
w1

≥ βj = 0 for any j > 1. Under this vector of unit effects,

CE(j1, j2) =
j2∑

j=j1+1
βj = 0. This shows that CE(j1, j2) is minimized at 0 for any j1 > 0.

Next, we prove Proposition 2∗(c) and show that the lower bound on CE(0, j2) is given by ACR/w1 if j2 ≥ 1
w1

.
Suppose that j2 ≥ 1

w1
. To show that CE(0, j2) ≥ ACR/w1, we will first show that the CE(0, j2) is minimized when

βj = 0 ∀ j > 1. Proceeding by contradiction, suppose that the CE(0, j2) is minimized by a vector of unit treatment
effects (β1, ..., βJ) with βj > 0 for some j > 1. Let k denote the highest intensity non-zero unit effect, more precisely
k = max

j
{2, ..., J | βj > 0}. Along with Assumption 6, this implies β1 ≥ β2 ≥ ... ≥ βk > 0. Consider a new vector of

unit treatment effects, (β̃1, ..., β̃J), which is identical to the first vector, except that βk has been set to zero, β̃k = 0, and
the first unit effect has been increased to maintain feasibility with respect to the ACR constraint: β̃1 = β1 + βkwk/w1.
But, with these changes, the value of the objective function is lower than that of the original vector of unit effects:

j2∑
j=1

β̃j −
j2∑
j=1

βj = βk
wk

w1
− βk < 0,

where the last inequality follows from Assumptions 5 and 7. Thus, the initial vector of unit treatment effects must not
be the solution to the constrained minimization problem, proving the contradiction. Finally, to prove the result, note that
when βj = 0 ∀ j > 1, it follows that CE(0, j2) =

∑
j βj = β1 = ACR/w1, where the last equality follows from the

definition of the ACR. Next, we show that CE(0, j2) = ACR/w1 would not be a lower bound if j2 < 1
w1

. Proceeding
by contradiction, suppose that the CE(0, j2) is minimized by a vector of unit treatment effects β = (β1, ..., βJ) with
β1 = ACR/w1 and βj = 0 for all j > 1. Consider a new vector of unit treatment effects, β̃ = (β̃1, ..., β̃J), where
β̃j = β̃j+1 for all j ∈ {1, ..., J − 1}. The ACR constraint implies that β̃j = ACR for all j. Comparing the objective
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function under β and β̃,

j2∑
j=1

β̃j −
j2∑
j=1

βj = ACR× j2 −
ACR

w1
< 0

where the last inequality follows from the assumption that j2 < 1
w1

. This shows that CE(0, j2) = ACR/w1 would not
be a lower bound if j2 < 1

w1
.

Finally, we prove Proposition 2∗(d) and show that CE(0, j2) is minimized at ACR × j2 if j2 < 1
w1

. To show that
CE(0, j2) ≥ ACR × j2, we will first show that CE(0, j2) is minimized when β1 = β2 = ... = βJ . Proceeding by
contradiction, suppose that CE(0, j2) is minimized by a vector of unit effects β = (β1, β2, ...βJ) where βj = βj+1 for
all j except j = k for some k ∈ {1, 2, ..., J − 1}. This implies that βk > βk+1 (concavity rules out the reverse ordering).
We can re-write (C.1) under the vector β as:

J∑
j=1

βjwj =
k∑

j=1

βjwj +
J∑

j=k+1

βjwj =
k∑

j=1

βkwj +
J∑

j=k+1

βk+1wj = ACR

where the second equality follows from the assumption that βj = βk for all j ≤ k and βj = βk+1 for all j ∈ {k+1, ..., J}.

Define w̃k =
k∑

j=1
wj and w̃k+1 =

J∑
j=k+1

wj . Then, βkw̃k + βk+1w̃k+1 = ACR.

Consider a new vector of unit treatment effects, (β̃1, ..., β̃J), with β̃k = βk − (βk−βk+1)w̃k+1

w̃k+w̃k+1
and β̃k+1 = βk+1 +

w̃k(βk−βk+1)
w̃k+w̃k+1

, so that β̃k = β̃k+1. Note that (β̃1, ..., β̃J) is a feasible unit vector since it satisfies C.1-C.3. Next, we show
that with these changes, the value of the objective function is smaller than that of the original vector of the unit effects. If
k ≥ j2,

j2∑
j=1

β̃j −
j2∑
j=1

βj = −j2 ×
(βk − βk+1)w̃k+1

w̃k + w̃k+1
< 0

where the last inequality follows from the assumption that βk > βk+1. If k < j2,

j2∑
j=1

β̃j −
j2∑
j=1

βj =

k∑
j=1

(
β̃j − βj

)
+

j2∑
j=k+1

(
β̃j − βj

)
= −k × (βk − βk+1)w̃k+1

w̃k + w̃k+1
+ (j2 − k)

w̃k(βk − βk+1)

w̃k + w̃k+1

=

(
βk − βk+1

w̃k + w̃k+1

)(
j2w̃k − k(w̃k + w̃k+1)

)
≤
(
βk − βk+1

w̃k + w̃k+1

)(
j2w1 − k

)
<

(
βk − βk+1

w̃k + w̃k+1

)(
1− k

)
≤ 0

where the fourth line follows from the fact that w1 > wj for all j > 1 and w̃k + w̃k+1 = 1, the fifth line follows from the
fact that j2 < 1

w1
=⇒ j2w1 < 1, and the final inequality follows from the fact that βk > βk+1 by assumption and k ≥ 1.

This shows that when j2 <
1
w1

, CE(0, j2) is minimized when β1 = ... = βJ . Using the ACR constraint, this implies
that βj = ACR for all j. Using this to re-write CE(0, j2) as CE(0, j2) =

∑j2
j=0 βj = ACR × j2. Finally, the same

argument as in Appendix Section G can be used to establish that these bounds are sharp. ■
Proposition 2∗ also sheds light on the width of the bounds on CE(j1, j2) under Assumptions 1-7. Here, we provide

some discussion on the value of j2 for which the bounds on the CE(0, j2) are the tightest. First, we note that the upper
bound CE(0, j2) is increasing in j2∑j2

j=1 wj

. Therefore, increasing j2 by one unit will increase the upper bound more if there
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is a relatively greater drop-off in the share of compliers induced by the instrument to move beyond treatment intensity j2

i.e., if wj for j > j2 is smaller. On the other hand, the lower bound on CE(0, j2) in Proposition 2∗ is maximized at
treatment level j2 where j2 > 1/w1 . To summarize, under Assumptions 1-7, the bounds on the effect of moving from 0

to j2 will be tightest when j2 is such that wj for j > j2 is small and when j2 > 1/w1.
While Assumption 7 does not directly apply in our analysis of Taubman et al. (2014), this discussion clarifies how the

width of the bounds might change depending on the distribution of compliers and the parameter of interest. In particular,
we observe relatively tight bounds on the effect of one full-year effect of Medicaid coverage. To understand why this
occurs, we can see in Figure A.1(a)-(b) that only about 17% of the compliers cross a treatment intensity of greater than 12
months, and 1/w1 ≈ 13. This implies that, at j2 = 12, the lower bound may be close to its maximum value and the upper
bound may be close to its minimum value. Indeed, this is the case. Figure I.1 plots the lower bound and upper bound
on the effect of moving from no Medicaid coverage to j2 months of Medicaid coverage (shown on the x-axis). As can
be seen from the figure, at j2 = 12, the lower bound is only approximately 8% smaller than its maximum value and the
upper bound is only approximately 9% larger than its minimum value; hence the bounds (the difference between the red
and blue lines) is quite narrow around 12 months.

Figure I.1: Bounds on CE(0, j2) in Taubman et al. (2014)
Notes: The figure displays bounds on the effect of moving from 0 months of Medicaid coverage to j2 months of Medicaid coverage on Emergency Department usage.

Bounds on CE(0, j2) are displayed in percentage points on the y-axis. The bounds are computed by solving LP.7 for j2 = 1, ..., 19.
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