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Abstract

In many settings, the causal effect of a treatment on an outcome depends on the intensity

with which the treatment is administered. We study identification of a treatment’s cumulative

effect — that is, the causal effect of moving from the treatment’s minimum intensity to its

maximum intensity. With arbitrary heterogeneity across units, we show that the standard

LATE assumptions (Angrist and Imbens, 1995) do not constrain this parameter, even among

compliers. We consider a range of additional assumptions and show how they can deliver

informative bounds. We illustrate our approach with two applications, involving the effect of

(1) health insurance on emergency department usage, and (2) attendance in an after-school

program on student learning. (JEL C01, C21, C26)
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1 Introduction

In many settings, the causal effect of a treatment on an outcome depends on the intensity with

which the treatment is administered. For example, the effect of a drug depends on its dosage.

The effect of education on wages depends on the number of years of completed schooling. When a

binary instrument is used to estimate the effect of a non-binary treatment with variable intensity,

the two-stage least-squares estimator identifies the Average Causal Response (ACR), a weighted

average of causal effects of a unit change in treatment intensity, where the weights depend on the

fraction of compliers induced to cross the various treatment intensity levels (Angrist and Imbens,

1995).

In this paper, we study identification of a treatment’s cumulative complier effect (CCE) — that

is, the causal effect of moving from the treatment’s minimum intensity to its maximum intensity,

averaged among those individuals induced to a higher treatment intensity because of the instrument.

Frequently, this parameter is an important one for policymakers to understand, such as when a

new program or policy is being rolled out to a previously unexposed group, or when a researcher

investigates whether a treatment exhibits diminishing marginal returns in its intensity. In such

cases, the CCE reveals the effect of providing a “full dose” of the program to individuals who would

otherwise not receive it, rather than—as with the ACR—a weighted average of dose-specific causal

effects based on the particulars of the intervention being evaluated.

The main challenge in identifying the CCE is understanding the dose-response relationship be-

tween the treatment and the outcome – i.e., the causal effect of an additional unit of treatment

intensity at each level of treatment (referred to as, unit causal effects). Under the standard in-

strumental variable (IV) assumptions of relevance, independence, and monotonicity, the two-stage

least-squares estimator identifies only a specific weighted average of these unit causal effects (i.e.,

the ACR). Below, we highlight how extrapolating from the ACR to the CCE is subject to two

forms of potential bias. First, the ACR over-weights the unit causal effects among compliers whose

treatment intensity is more greatly affected by the instrument. Second, the ACR over-weights the

unit causal effect for ranges of the dose response function through which compliers are more likely
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to pass. Thus, depending on the specific instrument being analyzed, the ACR may yield a very

different picture of a treatment’s effects than the CCE.

We provide two main results. First, we consider identification of the CCE under the standard IV

assumptions of relevance, independence, and monotonicity. Without imposing additional structure,

we show that the CCE is entirely unconstrained, in that the data do not permit the researcher to

rule out any possible value for the CCE.

Second, we consider identification of the CCE under additional identifying assumptions. The

key assumption we consider requires a researcher to abstract from heterogeneity in the unit causal

effects within the population of compliers. This assumption is restrictive, but may be a plausible

approximation in research settings of interest, as we illustrate through two applications. We show

how a researcher may use this assumption, along with additional structure motivated by the setting

at hand, to partially identify the CCE as the solution to a constrained linear optimization problem.

For example, a researcher may impose sign restrictions on the unit causal effects or on the concavity

of the dose-response function, as in Goldin, Lurie and McCubbin (2021), or on the margin through

which an instrument affects participation in a treatment, as in Rose and Shem-Tov (2021a). Here,

we develop the conditions under which this approach identifies bounds on the CCE.

We apply our approach to study two randomized programs involving the free provision of

health insurance and an after-school instruction program, respectively. For policymakers consid-

ering whether to expand these pilot programs, the CCE is a particularly relevant parameter; it

describes the effect of fully providing the program to individuals who would not otherwise be able

to participate. With respect to the health insurance expansion we study, for example, we focus on

the effect of providing a full year of health insurance coverage to an individual who would other go

uninsured. As we discuss in more detail below, this parameter could differ from the ACR in prac-

tice because the experimental intervention yielded a heterogeneous first-stage effect on insurance

take-up and the relationship between months of insurance and the outcome being studied may be

non-linear.

In contrast to the large literature studying identification of the effects of binary treatments with

binary instruments, there has been less work studying the use of binary instruments to identify the
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effects of non-binary treatments. Angrist and Imbens (1995) provides conditions under which two

stage least squares identifies the ACR, but as discussed above and in Heckman, Urzua and Vytlacil

(2006), the ACR is tied to a specific instrument rather than the treatment, and therefore may

not be well-suited to assessing specific alternative policy interventions. A related literature focuses

on extrapolating policy-relevant parameters from IV research designs, but the methods studied

in this literature require additional exogenous variation in the form of non-binary instruments

(Heckman and Vytlacil, 2007; Imbens and Newey, 2009) or limit their focus to binary treatments

(e.g., Mogstad and Torgovitsky, 2018). An exception is Torgovitsky (2015), which point-identifies

the dose response function for a continuous treatment under the assumption of rank invariance for

both the first-stage and outcome equations. Chernozhukov and Hansen (2005) also accommodates

non-binary treatments under a rank invariance condition in the quantile IV setting.

Finally, a common practice by researchers in settings with non-binary treatments is to “bina-

rize” the treatment by collapsing it into two categories; two recent papers study the assumptions

underlying the validity of this approach (Andresen and Huber, 2021; Rose and Shem-Tov, 2021b).

In contrast, the parameter we study is based on the dose-response relationship for the original

(un-collapsed) non-binary treatment.

2 Setting and Notation

Consider a population, indexed by i, in which individuals are assigned a binary instrument, Zi ∈

{0, 1}, and one level of a discrete treatment, ranging in intensity from 0 to J . Let Di(Z) ∈

{0, 1, 2, ..., J} denote i’s treatment level under each value of the instrument, and let Yi(j) denote

the outcome of interest that would be obtained if i were to receive treatment level j.

We also assume that the following conditions are satisfied.

Assumption 1: Relevance

E[Di | Zi = 1]− E[Di | Zi = 0] ̸= 0

Assumption 2: Independence

{Yi(0), Yi(1), ..., Yi(J), Di(0), Di(1)} ⊥⊥ Zi
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Assumption 3: Monotonicity

IP (Di(1) ≥ Di(0)) = 1

Angrist and Imbens (1995) show that under these assumptions, the standard two-stage least-

squares estimator identifies the average causal response (ACR) of Di on Yi, i.e. a weighted average

of the causal effect from a unit change in the treatment on the outcome, where the weights are the

share of corresponding unit changes in the treatment intensity induced by the instrument. More

precisely, the ACR corresponds to the right hand side of the following equation:

E[Y | Z = 1]− E[Y | Z = 0]

E[D | Z = 1]− E[D | Z = 0]
=

J∑
j=1

wjE[Yi(j)− Yi(j − 1) | Di(1) ≥ j > Di(0)] (1)

where

wj =
P [Di(1) ≥ j > Di(0)]∑J
j=1 P [Di(1) ≥ j > Di(0)]

.

To analyze the ACR, it will be convenient to introduce the following notation. Let βij denote

the unit-causal effect for individual i at treatment intensity j:

βij = Yi(j)− Yi(j − 1). (2)

Similarly, let δij indicate whether the instrument induces unit i to cross treatment intensity j,

δij = 1{Di(1) ≥ j > Di(0)}. In addition, let δi denote i’s change in treatment intensity induced by

the instrument, δi =
1
J

J∑
j=1

δij ; let δj denote the share of units induced by the instrument to cross

treatment intensity j, δj = 1
N

N∑
i=1

δij ; and let δ denote the total share of treatment level increases

induced by the instrument, δ = 1
NJ

N∑
i=1

J∑
j=1

δij .

Using this notation, we can express the ACR as the (scaled) sum of unit-causal effects induced

by the intervention:

ACR =

∑N
i=1

∑J
j=1 δijβij∑N

i=1

∑J
j=1 δij
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Our goal is to shed light on the average cumulative effect of a treatment. We define the cumu-

lative effect of a treatment on an outcome Y as the causal effect of a shift from D = 0 to D = J , or

Yi(J) − Yi(0). Our parameter of interest, the cumulative complier effect (CCE), is defined as the

mean cumulative effect for the population of compliers:

CCE = E [Yi(J)− Yi(0) | Di(1) > Di(0)] (3)

In the next section, we highlight challenges to identifying the CCE under Assumptions 1-3.

However, these assumptions do permit us to identify the weights corresponding to each unit-response

in Equation 1, {wj}Jj=1. In Section 4, we propose using these estimated weights, along with the

estimated ACR and setting-specific assumptions about the unit causal effects, to bound the CCE.

3 Challenges to Identifying the CCE

Although both the ACR and CCE are functions of a treatment’s unit causal effects, the former

cannot be directly extrapolated to identify the latter. Intuitively, whereas the ACR summarizes

the average causal effect associated with a specific intervention, the CCE summarizes the average

causal effect of the treatment across all compliers and all treatment intensities. More concretely,

suppose that we decompose the unit causal effect as

βij = γ + γi + γj + γ̃ij

where γ denotes the average unit causal effect among compliers, γ = CCE
J ; γi captures unit-

level heterogeneity, γi = 1
J

∑
j βij − γ; γj captures heterogeneity across treatment intensities,

γj =
1
N

∑
i βij − γ; and γ̃ij captures the remaining heterogeneity among unit causal effects, γ̃ij =

βij − γ − γi − γj . We can then express the relationship between the ACR and the CCE as:

ACR =
1

J
CCE +

1

δ
(Cov(γi, δi) + Cov(γj , δj) + Cov(γ̃ij , δij)) (4)
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A derivation for Equation (4), and all other results, is provided in the Online Appendix. The

equation highlights two potential forms of selection that may cause the ACR to diverge from the

CCE. First, Cov(δi , γi) captures the fact that those individuals who are induced by the intervention

to increase their treatment intensity may also have higher per-unit treatment effects. The second

covariance term, Cov(δj , γj), captures the fact that the additional levels of the treatment induced

by the intervention may have higher per-unit treatment effects than other levels of the treatment

(that were not induced by the intervention). Finally, the third covariance term, Cov(γ̃ij , δij) reflects

the potential interaction between these two types of selection.

Given the potential wedge between the ACR and the CCE, a natural question to ask is what

can be learned about the CCE under the assumptions that identify the ACR? Unfortunately, as

the next result shows, the answer is “not much.” Intuitively, since not all compliers move along

the full length of the dose-response function from treatment intensity 0 to J , but still contribute to

the CCE, we need to impose additional structure on the unit-causal effects to extrapolate across

complier types.

To see this, note that the CCE can be re-written as

CCE =
1

Nc

δ ACR+

N∑
i=1

J∑
j=1

1(Di(1) > Di(0))(1− δij)βij

 (5)

where Nc denotes the number of compliers and δ is equal to
∑
i

∑
j

δij . Since the CCE is increasing

in the unit causal effects, it can be made arbitrarily large or small unless the unit-causal effects

are constrained in magnitude. However, for i, j such that δij = 0, βij can be made arbitrarily

large or small without affecting the ACR. Thus, the standard IV assumptions, on their own, do not

meaningfully constrain which values of the CCE are consistent with the data.

In the Online Appendix, we consider the additional restriction of bounds on the distribution of

the outcome. In this case, it can be seen from Equation (2) that the unit-causal effects, and hence

the CCE, are also bounded. Unfortunately, as discussed in the Online Appendix, these bounds are

typically uninformative without additional assumptions on the magnitude of the unit causal effects.
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4 Identifying the Cumulative Complier Effect

Under Complier Effect Homogeneity

In this section, we abstract from potential heterogeneity in the unit causal effects among compliers

to facilitate identification of the CCE. The following assumption is restrictive, but as we illustrate

in Section 5, it can be plausible in real-world applications of interest.1

Assumption 4: Homogeneous Incremental Effect Among Compliers

Di(1) > Di(0) =⇒ Yi(j)− Yi(j − 1) = βj

The value of this assumption is that it focuses attention on the uncertainty in the identification

of the CCE that arises due to the unknown shape of the treatment’s dose-response function. Under

this homogeneity assumption, we can express the ACR and CCE as

ACR =

J∑
j=1

wjβj

and

CCE =

J∑
j=1

βj

To shed light on the range of cumulative effects of the treatment consistent with the data, we

find bounds on the CCE by casting it as a linear optimization problem. Under Assumptions 1-4,

the optimization problem can be written as:

Maximize/Minimize
{βj}

J∑
j=1

βj LP.1

subject to

J∑
j=1

βjwj = ACR (C.1)

Denote the maximum feasible value of this objective function,
∑J

j=1 βj , by CCE and the min-

imum by CCE. Since βj can be arbitrarily large or small, CCE is generally unbounded under

1In addition, as we argue in our application, Assumption 4 may be more likely to hold after conditioning on
observable characteristics along the lines of Angrist and Fernandez-Val (2010).
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Assumption 1-4. More formally, for any a ∈ R, non-uniform set of weights {w}, and observed ACR

value, there exists a feasible solution vector (β1, β2, ..., βJ) such that CCE = a. Hence, additional

assumptions regarding the unit causal effects are needed to obtain meaningful bounds on CCE.

We now consider a range of additional assumptions that may be appropriate to impose depending

on the application, in the spirit of Manski (2003). In some settings, the direction of the treatment

effect will be known from theory or prior research. In such cases, without loss of generality, we can

impose that the direction of each unit effects is positive:

Assumption 5: Uniform Sign of Unit Causal Effects

βj ≥ 0 ∀ j

Under Assumptions 1-5, the CCE can be bounded based on the ACR and the empirically

observable weights.2

Proposition 1: Under Assumptions 1-5,

CCE ∈

[
ACR

wj

,
ACR

wj

]

where j = argminj∈{1,...J}{wj} and j = argmaxj∈{1,...J}{wj}.3

In some settings, it will be reasonable to impose additional assumptions beyond restrictions on

the sign of the treatment effect. For example, the researcher may have good reason to believe that

the magnitude of the unit causal effects is non-increasing in the intensity of the treatment. We refer

to this assumption as concavity of the dose-response function:

Assumption 6: Concavity

βj ≥ βj+1 ∀ j = 1, ..., J − 1

2In the Online Appendix, we consider the bounds on the CCE under a modification of Assumption 5, where the
unit causal effects are additionally bounded from above.

3Note that if one of the weights is zero, then wj = 0; in this case, CCE ∈
[
ACR
wj

, ∞
)
.
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Under Assumptions 1-6, bounds on the CCE can be obtained from the linear optimization

problem:

Maximize/Minimize
{βj}

J∑
j=1

βj LP.2

subject to

J∑
j=1

βjwj = ACR (C.1)

βj ≥ 0 ∀ j = 1, ..., J (C.2)

βj ≥ βj+1 ∀ j = 1, ..., J − 1 (C.3)

Goldin, Lurie and McCubbin (2021) solved this linear problem to estimate bounds on the cumulative

effect of health insurance coverage in their setting.

Finally, in some settings the share of compliers that are induced by an instrument to cross a

particular treatment intensity threshold will be non-decreasing in the threshold level:

Assumption 7: Monotonic Complier-Share Weights

wj ≥ wj+1 ∀ j = 1, ..., J − 1, and the inequality is strict for at least one such j.

Unlike Assumptions 5 and 6, Assumption 7 is empirically verifiable because the complier-share

weights are identified under our maintained Assumptions 1-3. A sufficient condition for Assumption

7 to hold is that all individuals who increase treatment intensity in response to the instrument do

so on the extensive margin (Rose and Shem-Tov, 2021b).

In settings where these conditions hold, we can obtain the following sharp bounds on the CCE:

Proposition 2: Under Assumptions 1-7,

CCE ∈
[
ACR

w1
, ACR× J

]

When Proposition 2 applies, the CCE is maximized when the dose-response function is linear

and minimized when intensive margin changes in the intensity of the treatment have no effect on

the outcome.
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5 Applications

We illustrate the method by applying it in two empirical settings: the Oregon Health Insurance

Experiment (Taubman et al., 2014) and a randomized intervention studying the effect of a computer-

aided learning program for middle-school students on test scores in India (Muralidharan, Singh and

Ganimian, 2019). Table 1 shows the ACR and the bounds for the CCE for both settings. Following

Andrews (2000), we provide confidence intervals on the CCE bounds using a modified bootstrapping

procedure that provides accurate coverage in linear optimization settings like the one we study.

5.1 Health Insurance and Emergency Department Usage

In 2008, certain low-income adults in Oregon were selected through a lottery to enroll in Medicaid.

Taubman et al. (2014) use this random variation to study the effect of Medicaid on Emergency

Department (ED) usage. To shed light on the cumulative effect of obtaining a full period of

Medicaid coverage, we define the treatment intensity as the number of months an individual was

enrolled in Medicaid during the 19-month study period. The data imply an ACR of Medicaid

on ED use of 0.53 percentage points. While this captures the average effect of the additional

months of Medicaid coverage induced by the particular intervention being studied, hospitals and

policymakers may also be interested in understanding the effect of providing annual coverage to

previously uninsured individuals.

It is likely that there is heterogeneity in the effect of Medicaid on ED usage across compliers.

However, Kowalski (2021) shows that previous ER utilization can explain the vast majority of this

heterogeneity; the marginal treatment effect curve is (approximately) flat after conditioning on

prior ED use. Motivated by this finding, we apply Assumption 4 conditional on prior ED use and

bound the CCE separately for those with and without a history of ED use before the Medicaid

lottery. We assume that the effect of Medicaid on ED use is non-negative (Assumption 5), and

that the per-month effect is non-increasing in the number of months of enrollment (Assumption 6).

However, it is likely that the Medicaid lottery increased months of enrollment for some individuals

who would have enrolled in coverage even absent the treatment, suggesting that Assumption 7 may
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not hold in this context.4 Hence, we obtain bounds on the CCE by solving the linear program in

LP.2.

In this context, the CCE captures the causal effect on ED usage of enrolling in Medicaid for

the full 19-month study period. Our results suggest this effect was an increase in the share of

individuals using the ED at least once of between 6.7 and 9.8 percentage points for those without a

prior history of ED use, and between 7.4 and 10.6 percentage points for those with a prior history

of ED use. We can combine these into a CCE for the overall sample by taking a weighted average

of the two, where the weights correspond to the observed distribution of prior ED use. The implied

CCE using this approach is between 6.9 and 10.1 percentage points. Similarly, we can also derive

bounds on the CCE associated with providing uncovered individuals with a full year of coverage by

replacing the objective function with
∑12

j=1 βj . Doing so implies an effect of a full year of Medicaid

coverage of between 6.3 and 7.6 percentage points.

5.2 After-School Instruction and Educational Outcomes

Muralidharan, Singh and Ganimian (2019) study the effect of a technology-aided after-school in-

struction program on test scores in urban India, using a lottery that provided winners with free

access to the program. Using the outcome of the lottery to instrument for weeks of program at-

tendance, the data from the paper imply an ACR for the program of a 0.045 standard deviation

increase in math test scores and a 0.030 standard deviation increase for Hindi (see Table 1).5 While

the ACR identifies a specific weighted average effect of attending the Mindspark centers for a week

on test scores, a policymaker considering whether to scale up the program might be particularly

interested in the overall effect of providing a full course of after-school instruction to a new set of

students.

The authors suggest that it is likely that the effects of the program are homogeneous across

students using three pieces of evidence. First, the observed treatment effects are similar across

the distribution of student achievement prior to the program – a likely source of heterogeneity.

4That being said, Appendix Figure 1(a) and 1(b) suggests only slight deviations from monotonicity.
5In their original analysis, the authors focused on days of attendance rather than weeks. Here, we pool the

treatment intensity to the week-level to reduce statistical variability.
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Second, the authors cannot reject equality of the IV and OLS value-added estimates, suggesting

the ATE and LATE might be similar and heterogeneity in the compliant subgroups might be small.

Finally, the authors note that the outcomes for the control group and never-takers are similar,

suggesting equality of potential outcomes across different compliance groups. Taken together, these

observations provide suggestive evidence in support of Assumption 4.

In addition, Assumptions 5 and 6 both seem likely to hold in this context: one would not

expect the program to reduce learning and it seems plausible (though not guaranteed) that there

would be non-increasing returns to scale to program attendance. Because only students who won

the lottery could attend the program, we know that all compliers were affected on the extensive

margin. Hence, as discussed in Section 4, the weights are guaranteed to be monotonically declining

so that Assumption 7 holds. Appendix Figure 1(c) empirically verifies that this is the case.

When these conditions hold, Proposition 2 provides sharp bounds for the CCE of weeks of

attendance. In particular, translating the ACR point estimate into bounds for the CCE implies that

the full program course (12 weeks) would increase math scores by between 0.40 and 0.54 standard

deviations and Hindi scores by between 0.27 and 0.36 standard deviations (Table 1, Column 2).

Like the main IV estimate, these bounds grow substantially less precise, but continue to exclude

zero, once statistical uncertainty is taken into account (Table 1, Column 3).

6 Conclusion

Researchers are often interested in evaluating the effect of non-binary treatments. In such settings,

the cumulative effect of the treatment, i.e., the effect of moving from minimum to maximum treat-

ment intensity, is a natural parameter of interest. In this paper, we have highlighted conditions that

allow for partial identification of this parameter among compliers and show that, in their absence,

meaningful identification is generally not feasible. While the required assumptions are strong, we

illustrate with two applications that they are plausible in settings of interest to applied researchers.
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Table 1: Bounds on the Cumulative Complier Effect (CCE)

(1) (2) (3)

Average Causal CCE Bounds CCE Bounds
Response (with 95% CI)

Taubman et al. (2014)
Emergency Department Usage 0.529 [6.918, 10.053] [2.160, 18.064]

(0.181)
Muralidharan, Singh and Ganimian (2019)

Math Test Score 0.045 [0.400, 0.538] [0.175, 0.722]
(0.007)

Hindi Test Score 0.030 [0.265, 0.357] [0.099, 0.630]
(0.007)

Notes: The table illustrates the application of the proposed method to estimating the effect of (1) health insurance
coverage on emergency department usage and (2) after-school instruction on test scores. The Average Causal Response
(Column 1) is obtained from a two-stage least-squares regression using the data reported in the specified study. The
point estimates for the CCE bounds (Column 2) are calculated as described in Section 4. The 95% confidence intervals
(Column 3) are obtained from an m-out-of-n bootstrapping procedure (Demuynck, 2015; Huang et al., 2016): instead
of drawing samples (with replacement) of size n equal to the sample size, we draw samples of size m ≪ n. To select
the appropriate m for this procedure, we follow the method proposed in Bickel and Sakov (2008).
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B Relationship between the ACR and CCE

Without loss of generality, suppose that i is indexed such that Di(1) > Di(0) ⇐⇒ i ≤ Nc. In this

case, the ACR can be written as:

ACR =

∑N
i=1

∑J
j=1 δijβij∑N

i=1

∑J
j=1 δij

and the CCE can be written as

CCE =
1

Nc

N∑
i=1

J∑
j=1

1(Di(1) > Di(0))βij

=
1

Nc

Nc∑
i=1

J∑
j=1

βij

Define γ as the average unit causal effect among compliers:

γ = CCE/J

Contrasting γ with the ACR, the ACR is a weighted average of unit causal effects for compliers

and weights corresponding to a specific treatment level. On the other hand, the γ considers the

average effect of a unit increase in treatment for all types of compliers if they had all moved along

the full length of the causal response. In contrast to the weighting scheme of the ACR, γ weighs

all compliers equally.

Next, note that each unit causal effect, βij , can be decomposed as follows:

βij = γ + γi + γj + γ̃ij

where γi captures unit-level heterogeneity, γi = 1
J

∑
j βij − γ; βj captures heterogeneity across

treatment intensities, γj = 1
Nc

∑Nc

i βij − γ; and γ̃ij captures the remaining heterogeneity among

unit causal effects, γ̃ij = βij − γ − γi − γj . Note that E[γi] = E[γj ] = E[γ̃ij ] = 0.

Finally, let δi denote i’s (mean) change in treatment intensity induced by the instrument, δi =
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1
J

J∑
j=1

δij ; δj denote the share of compliers induced by the instrument to cross treatment intensity

j, δj = 1
Nc

Nc∑
i=1

δij ; and δ denote the mean increase in treatment units induced by the instrument,

δ = 1
Nc

1
J

∑Nc

i=1

∑J
j=1 δij . Substituting this decomposition and notation into the ACR formula, we

have:

Nc J δ ACR =

Nc∑
i=1

J∑
j=1

δijβij

=

Nc∑
i=1

J∑
j=1

δij (γ + γi + γj + γ̃ij)

= γ Nc J δ +
∑
i

γi
∑
j

δij +
∑
j

γj
∑
i

δij +
∑
i

∑
j

γ̃ijδij

= γ Nc J δ +
∑
i

γi J δi +
∑
j

γj Nc δj +
∑
i

∑
j

γ̃ijδij

= γ Nc J δ +
Nc

Nc
J
∑
i

γi δi +
J

J
Nc

∑
j

γj δj +
Nc J

Nc J

∑
i

∑
j

γ̃ijδij

= γ Nc J δ +Nc J (Cov(γi, δi) + Cov(γj , δj) + Cov(γ̃ij , δij))

Dividing through by Nc J δ, we have:

ACR− γ =
1

δ
(Cov(γi, δi) + Cov(γj , δj) + Cov(γ̃ij , δij))

To obtain Equation (4), we simply plug γ = CCE/J into the above.
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C Heterogeneity Within Compliers

This section explores the bounds on the CCE after relaxing Assumption 4, allowing for potential

heterogeneity in the unit causal effects among compliers. Recall that the ACR is defined as

ACR =

J∑
j=1

wjE[Yi(j)− Yi(j − 1) | Di(1) ≥ j > Di(0)]

where

wj =
P [Di(1) ≥ j > Di(0)]∑J
j=1 P [Di(1) ≥ j > Di(0)]

Let δij = 1{Di(1) ≥ j > Di(0)}. We begin by noting that the ACR can be written as

ACR =

N∑
i=1

J∑
j=1

δij βij

N∑
i=1

J∑
j=1

δij

=
1

δ

N∑
i=1

J∑
j=1

δij βij

where δ =
N∑
i=1

J∑
j=1

δij . To see this, first note that P [Di(1) ≥ j > Di(0)] =
N∑
i=1

δij/N . Therefore,

wj =

N∑
i=1

δij

J∑
j=1

N∑
i=1

δij

Additionally, observe that

E[Yi(j)− Yi(j − 1) | Di(1) ≥ j > Di(0)] =

N∑
i=1

βijδij

N∑
i=1

δij
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Putting the above together,

ACR =

J∑
j=1

wjE[Yi(j)− Yi(j − 1) | Di(1) ≥ j > Di(0)]

=

J∑
j=1

N∑
i=1

δij

J∑
j=1

N∑
i=1

δij

N∑
i=1

βijδij

N∑
i=1

δij

=

J∑
j=1

N∑
i=1

βijδij

J∑
j=1

N∑
i=1

δij

=
1

δ

N∑
i=1

J∑
j=1

δij βij

Rearranging, we get:

δ ACR =

N∑
i=1

J∑
j=1

δij βij (6)

Recall that the parameter of interest, the CCE, is defined as

CCE = E[Yi(J)− Yi(0)|Di(1) > Di(0)]

= E

 J∑
j=1

βij | Di(1) > Di(0)



=

N∑
i=1

J∑
j=1

1(Di(1) > Di(0))βij

N∑
i=1

1(Di(1) > Di(0))
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Let Nc be the number of compliers, Nc :=
N∑
i=1

1(Di(1) > Di(0)).

CCE =
1

Nc

 N∑
i=1

J∑
j=1

1(Di(1) > Di(0))βij


=

1

Nc

 N∑
i=1

J∑
j=1

1(Di(1) > Di(0))
(
βij + βijδij − βijδij

)
=

1

Nc

 N∑
i=1

J∑
j=1

1(Di(1) > Di(0))
(
βijδij + (1− δij)βij

)
=

1

Nc

 N∑
i=1

J∑
j=1

1(Di(1) > Di(0))βijδij +

N∑
i=1

J∑
j=1

1(Di(1) > Di(0))(1− δij)βij


=

1

Nc

 N∑
i=1

J∑
j=1

βijδij +

N∑
i=1

J∑
j=1

1(Di(1) > Di(0))(1− δij)βij


=

1

Nc

δ ACR+

N∑
i=1

J∑
j=1

1(Di(1) > Di(0))(1− δij)βij


where the last equality uses (6). We begin by maximizing the CCE. Note that the CCE is increasing

in
N∑
i=1

J∑
j=1

1(Di(1) > Di(0))(1−δij)βij , and so it is maximized when βij is large. If βij is unbounded

for some i with Di(1) > Di(0), the CCE can be made arbitrarily large by increasing βij . Note that

one can always increase βij for all i and j such that δij = 0, since these unit causal effects are

unconstrained by the ACR, or other observable quantities. Therefore, we assume that βij ∈
[
β, β

]
.

Then, the maximum CCE is

CCE =
1

Nc

δ ACR+
N∑
i=1

J∑
j=1

1(Di(1) > Di(0))(1− δij)β


=

1

Nc

[
δ ACR+ (J Nc − δ)β

]
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Analogously, the minimum CCE is

CCE =
1

Nc

[
δ ACR+ (J Nc − δ)β

]
Note that the number of compliers, Nc, can be bounded by the approach suggested by Huang et al.

(2016). We first consider the case where the outcome is unbounded. Since βij = Yi(j)− Yi(j − 1),

the unit causal effects are also unbounded. Because δ is, by definition, weakly less than J Nc, the

bounds on the CCE can be made arbitrarily large or small depending on the user-specified bounds

on the unit causal effects, β and β.

Next, we specialize to the case where the outcome is bounded. Specifically, suppose that Yi ∈[
Y , Y

]
. Let ∆Y = Y −Y . The CCE is maximized when Yi(0) = Y and Yi(J) = Y for all compliers,

implying that CCE = ∆Y . While the bounds on the outcome provide a natural bound on the

CCE, we show next that these bounds are sharp.

We assume that for all i such that Di(1) > Di(0), there exists a k ∈ {1, ..., J} s.t. δik = 0.

This assumption states that it is consistent with the observed marginal distributions of Di(1) and

Di(0), that none of the individuals moved by instrument move along the full length of the dose-

response function.6 For example, a sufficient condition for this assumption to hold is that the

first stage is less than the total sample of treated units,
∑

i

∑
j δij ≤ N , because in that case the

data is consistent with each complier increasing their treatment intensity by only a single unit, i.e.,

∀ i, ∃ ji s.t. δi,ji = 1 and δij = 0∀ j ̸= ji. A similar assumption is considered by Imbens (2007).

For each individual i, let k(i) ∈ {1, 2, ..., J} be defined such that δi,k(i) = 0. Let βi,k(i) =

6This assumption can be verified in the data using the approach suggested by Huang et al. (2016).
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∆Y −
J∑

j=1

δijβij . Additionally, for all δij = 0 and j ̸= k(i), let βij = 0. Then,

CCE =
1

Nc

 N∑
i=1

J∑
j=1

1(Di(1) > Di(0))
(
βijδij + (1− δij)βij

)
=

1

Nc

 N∑
i=1

1(Di(1) > Di(0))

 J∑
j=1

βijδij +

J∑
j=1

(1− δij)βij


=

1

Nc

 N∑
i=1

1(Di(1) > Di(0))

 J∑
j=1

βijδij +∆Y −
J∑

j=1

βijδij


=

1

Nc

[
N∑
i=1

1(Di(1) > Di(0))∆Y

]
= ∆Y

This shows that the CCE can attain the value ∆Y . Similarly, it can be shown that CCE can attain

a minimum value of −∆Y .

We now explore how imposing additional restrictions on the unit causal effects might help

tighten the bounds. Consider a modification of Assumption 5, βij ∈
[
β, β

]
for all i and all j, where[

β, β
]
⊆

[
−∆Y ,∆Y

]
. Then, as above, the maximum of the CCE is given by

CCE =
1

Nc

δ ACR+

N∑
i=1

J∑
j=1

1(Di(1) > Di(0))(1− δij)β


We show that this additional assumption sharpens the bounds on the CCE, i.e., CCE ≤ ∆Y

CCE =
1

Nc

δ ACR+

N∑
i=1

J∑
j=1

1(Di(1) > Di(0))(1− δij)β


=

1

Nc

δ ACR+

N∑
i=1

1(Di(1) > Di(0))

J∑
j=1

β −
N∑
i=1

J∑
j=1

δijβ


≤ ∆Y +

δ

Nc

[
ACR− β

]
≤ ∆Y
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Similarly, CCE ≥ −∆Y . This shows that the bounds can be tightened by imposing additional

restrictions on the unit causal effects, similar to Assumption 5.

Next, we consider the implication of additionally assuming that the dose response function for

each individual is (weakly) concave, i.e., βi,j ≥ βi,j+1 for all i and j < J . Recall that in the

absence of the concavity assumption, one can always choose βij ∈ [β, β] for all i and j such that

δij = 0, since these unit causal effects are unconstrained by the ACR, or other observable quantities.

However, the concavity assumption constrains these unit causal effects. To see this, suppose that

i is moved by the instrument from 0 to k units of treatment intensity. This implies that, βik

which is constrained by the ACR, provides an upper bound for all βij where j > k even though

δij = 0. Since we cannot identify where the compliers are moved along the dose response function,

this assumption alone cannot be used to further tighten the bounds. Indeed, this motivates an

assumption of homogeneous unit causal effects within compliers, considered in Section 4 of the

main text.
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D Proof for Proposition 1

To establish that CCE ≥ ACR/wj , we will first show that CCE is minimized when βj is the only

non-zero unit causal effect, i.e., βj = 0 for all j ̸= j. Proceeding by contradiction, suppose instead

that CCE was minimized by a vector of unit treatment effects (β1, ..., βJ) with βk > 0 for some

k ̸= j. Consider a new vector of unit treatment effects, (β∗
1 , ..., β

∗
J) identical to the first, except that

the specified non-zero effect has been set to zero, β∗
k = 0, and the unit effect corresponding to the

largest weight, βj , has been increased to maintain feasibility with respect to the ACR constraint:

β∗
j
= βj +βk wk/wj . But, with these changes, the value of the objective function is lower than that

of the original vector of unit effects:

∑
β∗
j −

∑
βj = βk

wk

wj

− βk < 0,

where the last inequality follows from Assumption 5 and the definition of j. Thus, the initial vector

of unit treatment effects must not be the solution to the constrained minimization problem, proving

the contradiction. The proof that CCE ≤ ACR/wj is analogous. ■
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E Proof for Proposition 2

To show that CCE ≥ ACR/w1, we will first show that the CCE is minimized when βj = 0

∀ j > 1. Proceeding by contradiction, suppose that the CCE is minimized by a vector of unit

treatment effects (β1, ..., βJ) with βj > 0 for some j > 1. Let k denote the highest intensity non-

zero unit effect, more precisely k = max
j

{2, ..., J | βj > 0}. Along with Assumption 6, this implies

β1 ≥ β2 ≥ ... ≥ βk > 0. Consider a new vector of unit treatment effects, (β̃1, ..., β̃J), which is

identical to the first vector, except that βk has been set to zero, β̃k = 0, and the first unit effect

has been increased to maintain feasibility with respect to the ACR constraint: β̃1 = β1+βkwk/w1.

But, with these changes, the value of the objective function is lower than that of the original vector

of unit effects:

∑
β̃j −

∑
βj = βk

wk

w1
− βk < 0,

where the last inequality follows from Assumptions 5 and 7. Thus, the initial vector of unit

treatment effects must not be the solution to the constrained minimization problem, proving

the contradiction. Finally, to prove the result, note that when βj = 0 ∀ j > 1, it follows that

CCE =
∑

j βj = β1 = ACR/w1, where the last equality follows from the definition of the ACR.

To show that CCE ≤ ACR × J , we will first show that the CCE is maximized when the unit

causal effects are equalized, i.e., when β1 = β2 = ... = βJ . Proceeding by contradiction, suppose that

the CCE is maximized by a vector of unit treatment effects (β1, β2, ..., βJ) with βk > βk+1 for some

k ∈ {1, ..., J−1} (concavity rules out the reverse ordering). Consider a new vector of unit treatment

effects, (β̃1, ..., β̃J), which is identical to the first vector, except that β̃k = βk − (βk−βk+1)wk+1

wk+wk+1
and

β̃k+1 = βk+1 +
wk(βk−βk+1)

wk+wk+1
, so that β̃k = β̃k+1. Note that (β̃1, ..., β̃J) is a feasible solution vector

since it satisfies C.1-C.3. But, with these changes, the value of the objective function is higher than

that of the original vector of the unit effects:

∑
β̃j −

∑
βj =

(βk+1 − βk)(wk+1 − wk)

wk+1 + wk
> 0,
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where the last inequality follows from the assumption that βk > βk+1 (Assumption 6) and that

wk > wk+1 (Assumption 7). Thus, the initial vector of unit treatment effects must not be the

solution to the constrained maximization problem, proving the contradiction. ■
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F Bounded Unit-Causal Effects with Homogeneity

This section considers the bounds for the CCE when Assumption 5 is modified such that the unit

causal effects are additionally bounded from above, i.e., βj ∈ [β, β]. If we are interested in solving

LP.1 under Assumptions 1-4 and the modified Assumption 5, we may re-write the problem as:

Maximize/Minimize
{βj}

J∑
j=1

βj LP.3

subject to

J∑
j=1

βjwj = ACR (C.1)

βj ≥ β (C.2)

βj ≤ β (C.3)

We begin by minimizing the above optimization problem. Following the same logic used in the

proof for Proposition 1, note that the CCE is minimized when ∀ j ̸= j, βj = β. Proceeding

by contradiction, suppose instead that CCE was minimized by a vector of unit treatment effects

(β1,...βJ) with βk > β for some k ̸= j. Consider a new vector of unit treatment effects, (β∗
1 , ..., β

∗
J)

identical to the first except that βk has been set to β, β∗
k = β, and the unit effect corresponding to

the largest weight, βj , has been increased to maintain feasibility with respect to the ACR constraint:

β∗
j
= βj + (βk − β)wk

wj
. But, with these changes, the value of the objective function is lower than

that of the original vector of unit effects:

∑
β∗
j −

∑
βj = (β − βk)

(
1− wk

w1

)
< 0.
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Now, we can re-write the ACR constraint as

J∑
j=1

βjwj = βjwj +
∑
j ̸=j

βjwj

= βjwj + β
∑
j ̸=j

wj

= βjwj + β(1− wj) = ACR

=⇒ βj =
ACR

wj

−
β(1− wj)

wj

This implies that,

min(CCE) =
ACR

wj

−
β(1− wj)

wj

+ (J − 1)β

Using a similar logic to the above, we can show that the CCE is maximized when ∀j ̸= j, βj = β.

Then ,

βj =
ACR

wj
−

β(1− wj)

wj

=⇒ max(CCE) =
ACR

wj
−

β(1− wj)

wj
+ (J − 1)β

As should be expected, these bounds are weakly tighter than the bounds provided in Proposition

1.
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