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Abstract

Economists often estimate causal effects of policies on multiple outcomes and sum-
marize them into scalar measures of cost-effectiveness or welfare, such as the Marginal
Value of Public Funds (MVPF). In many settings, microdata underlying these estimates
are unavailable, leaving researchers with only published estimates and their standard
errors. We develop tools for valid inference on functions of causal effects, such as the
MVPF, when the correlation structure is unknown. Our approach is to construct worst-
case confidence intervals, leveraging experimental designs to tighten them, and to assess
robustness using breakdown analyses. We illustrate our method with MVPFs for eight

policies. (JEL C12, C21, H00)
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1 Introduction

Policymakers increasingly rely on evidence from randomized evaluations to guide decisions
about which programs to fund and scale. These evaluations often report multiple estimated
causal effects—for example, a tax credit program’s impacts on earnings, after-tax income,
and labor force participation—but policymakers typically care about a summary measure
that aggregates these effects into a measure of overall cost-effectiveness of the policy, such
as the Marginal Value of Public Funds (MVPF). Determining whether a program delivers
“bang for the buck” thus requires inference on a scalar function of several estimated causal
effects, rather than on any individual effect alone.

Conducting valid inference on such summary measures of policy cost-effectiveness is often
difficult in practice. In many cases, researchers observe only the estimated causal effects and
their standard errors but lack information about the correlations between them. These
correlations are crucial for quantifying uncertainty: the variance of any scalar function that
aggregates multiple effects depends not only on the precision of each individual estimate
but also on how the estimates co-vary. If the underlying microdata were available, the
covariances between causal effect estimates could be computed directly, allowing the variance
of the function to be estimated (e.g., Zellner, 1962). However, in many settings of practical
interest, the microdata are unavailable for ex-post analysis, leaving researchers to rely only
on published estimates and their standard errors. In this paper, we study the problem of
inference on functions of multiple causal effects when the correlation structure across these
causal effects is unknown.

To illustrate the challenge, we focus on the problem of conducting inference for the
Marginal Value of Public Funds (MVPF) of a policy (Hendren and Sprung-Keyser, 2020).
The MVPF is a widely used metric for evaluating the welfare consequences of government
expenditure. It is defined as a non-linear function of multiple causal effects: the benefits
a policy provides to its recipients are divided by the policy’s net cost to the government.

Hendren and Sprung-Keyser (2020) construct MVPFs for more than one hundred policies



using causal effects reported in existing studies. In most cases, only the point estimates and
their standard errors are available to them, while the microdata underlying these estimates
are inaccessible for such ex-post analysis. The challenge for inference is that the variance of
the MVPF depends on the correlations across causal effects, which are not reported and not
estimable.

We propose a simple inference procedure that delivers valid confidence intervals for func-
tions of causal effects, even when the correlation structure across effects is unknown. The
idea is straightforward: we ask what is the largest possible variance of the function given the
available information and we identify the correlation structure under which this upper bound
is attained. Using this worst-case variance, we construct conservative confidence intervals
that guarantee valid coverage. We show that this conservative approach enables meaningful
inference when computing the confidence intervals for MVPF estimates. Importantly, we for-
mulate the problem of finding the variance upper bound as an optimization problem, which
also makes it straightforward to incorporate other setting-specific information—for example,
known independence between causal effects—to further tighten the confidence intervals and
improve statistical precision.

Second, we show how confidence intervals can be tightened further still when the causal
effects correspond to the impacts of a randomized treatment on multiple outcomes. In this
setting, we characterize the off-diagonal entries of the covariance matrix and show that they
take a particularly interpretable form, the sign of which may be known from prior stud-
ies, economic theory, or other data sources. Incorporating such information allows us to
meaningfully increase statistical power to reject null hypotheses of interest.

Finally, we introduce a complementary approach to inference and ask a different question
from worst-case inference. Instead of focusing on the largest possible variance given the
available information, we ask how sensitive a policy-relevant conclusion is to uncertainty
about the correlation structure. For example, a policymaker may wish to test whether
a dollar spent on a policy provides beneficiaries with at least one dollar of benefits, i.e.,

Hy : MVPF < 1 against H; : MVPF > 1. We introduce a “breakdown statistic” that



quantifies how robust this conclusion is to different correlation structures: it measures the
proportion of admissible correlation structures under which the null hypothesis would not be
rejected. The statistic takes values between 0 and 1, where a value of 0 implies that we can
conclude that the MVPF is greater than 1 under all plausible correlation structures, while
a value of 1 implies that we cannot reject the null under any correlation structure. Unlike
inference based on the worst-case variance, which guarantees valid coverage but might be
conservative, the breakdown statistic facilitates comparisons of the robustness with which
we can arrive at a policy conclusion—for example, whether the MVPF of a policy is greater
than 1—across settings.

We illustrate our inference procedure by conducting inference on the MVPF for eight
different policies. First, we show that meaningful inference is possible even in the absence of
any microdata, using the upper bound of the variance alone. Second, Hendren and Sprung-
Keyser (2020) note that because the MVPF reflects the shadow price of redistribution, a
welfare-maximizing government should have a positive willingness-to-pay to reduce the sta-
tistical uncertainty around the cost of redistribution. We demonstrate how this uncertainty
can be reduced by leveraging setting-specific information about the sign of correlations across
outcomes. In fact, our novel characterization of the covariance structure in randomized trials
allows us to tighten MVPF confidence intervals beyond the worst-case by up to 30% in the
policies we consider. Finally, we compute the breakdown statistic for the MVPF across multi-
ple policies and illustrate how this metric can guide policymakers choosing among alternative
policies.

Our work contributes to the literature on welfare analyses of government expenditure (e.g.,
Chetty, 2009; Heckman et al., 2010; Hendren and Sprung-Keyser, 2020). While existing tools
provide a unified framework for evaluating the welfare consequences of government policies,
statistical methods for conducting inference on welfare metrics under frequently encountered
data limitations have been less developed. Our inference procedures strengthen the MVPF
framework by providing a formal approach to quantifying statistical uncertainty in welfare

metrics. Hendren and Sprung-Keyser (2020) show that increasing spending on Policy A is



welfare-improving by reducing spending on Policy B if and only if the MVPF of Policy A
exceeds that of Policy B; the methods developed in this paper provide a valid test for the
policy-relevant null hypothesis, Hy : MVPF4 < MVPF .

Hendren and Sprung-Keyser (2020) propose a parametric bootstrap approach that con-
structs confidence intervals for the MVPF under a user-specified correlation structure. While
such an approach can yield valid inference when the specified structure is indeed the worst
case, misspecification may lead to confidence intervals that fail to achieve nominal coverage.
Our method avoids this risk by formally identifying—rather than assuming—the correlation
structure that maximizes the variance, solving an optimization problem that guarantees valid
inference regardless of the true correlation structure. Moreover, our setup allows us to in-
corporate additional setting-specific information—for example, known independence across
estimates or theory-driven sign restrictions—thereby increasing statistical power when such
information is available.

Our methods might be applicable beyond the MVPF as well, in other settings when the
correlation structure across causal effects might be difficult to obtain. First, researchers are
frequently interested in functions of causal effects reported in existing publications, but the
underlying microdata may be inaccessible. This can occur when the effects are estimated
using privately held administrative data or when replication files are not publicly released.
Replication data are missing for nearly half of all empirical papers published in the American
Economic Review (Christensen and Miguel, 2018), underscoring how common this problem is.
Second, even when the underlying data are technically available, computing the correlations
can be prohibitively costly when the effects come from distinct datasets with common units
but difficult-to-merge identifiers. For example, unique identifiers may be missing in historical
decennial Census data (Ruggles, Fitch and Roberts, 2018), or the relevant data sources may
be stored across separate federal agencies, as is the case when linking administrative tax data
and administrative crime records for the full population (Rose, 2018).

Finally, Cocci and Plagborg-Mgller (2024) develop a closely related procedure in a dif-

ferent context: bounding the asymptotic variance of an estimate for a structural parameter
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when calibrating models to match empirical moments. Their work shows how to compute
worst-case standard errors when the off-diagonal elements of the variance-covariance matrix
are unknown, using only the variances of the empirical moments. We extend their frame-
work in three important ways. First, we exploit the structure of randomized treatments to
characterize the covariance matrix, which enables us to impose theory-motivated sign re-
strictions and potentially yields substantial power improvements. Second, our paper applies
this variance-bounding approach to a new domain—inference on welfare metrics, such as
the MVPF—where analysts frequently lack access to the underlying microdata. Third, we
introduce a “breakdown” approach that quantifies the robustness of policy conclusions to

uncertainty about the correlation structure.

2 Setting

Our starting point is a vector of estimated causal effects, denoted by ,é € R? that we
seek to aggregate into a measure of the cost-effectiveness of a policy. We assume that B
asymptotically follows a joint Normal distribution with variance-covariance matrix V. Since
it is standard practice to report standard errors for individual estimates, we assume we have
access to consistent estimates of the diagonal entries of V. In contrast, the covariances
between estimated causal effects—the off-diagonal entries of V—are rarely reported. We
focus on a setting where the underlying microdata are unavailable, so these off-diagonal
entries cannot be directly estimated. We summarize the available information in Assumption

1.

Assumption 1. From an existing study, we observe a wvector of estimated causal effects
8= (31, e ,Bd) for the true causal effects B = (61, e ,ﬁd), along with their corresponding

standard errors & = (81, . ,Ed). We assume:
(i) Consistency: 84
(ii) Asymptotic normality: ﬁ(ﬁ—,@) 4, N(O, V), where V is a dx d positive semi-definite
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variance-covariance matriz.

(iii) Consistent standard errors: &2 consistently estimates the diagonal entries of V, i.e.

(3%,...,33) RN (0%,...,03).

In our setting, f (B) represents an estimate of a policy’s cost-effectiveness. We assume
that the function aggregating the causal effects, f : R? — R, is continuously differentiable at
B, with f'(8) # 0. We place no additional restrictions on f(-) and allow it to be non-linear,
since in practice its form depends on the economic mapping between the estimated causal
effects and the cost-effectiveness measure for the policy being analyzed. This is summarized

in Assumption 2.

Assumption 2. The function f : R — R is continuously differentiable at B and satisfies

J'(B) # 0.

In summary, Assumption 1 states that we observe consistent estimates of the causal
effects and their standard errors, but lack reliable information about the covariances between
them. Assumption 2 requires that the function mapping estimated causal effects into the
cost-effectiveness measure is smooth and well-behaved. We maintain Assumptions 1 and 2
throughout the paper.

Under these assumptions, we apply the delta method to obtain the asymptotic distribution
of f(B):

d d

L 0B afB)  [NN( 0f(B)\] Of(B) 9f(8)
72—;;‘7@' OB 9B, - ;(Ui 95, > + izljzlmj 98, 08, (2.1)
{i,j:i#5}



and o;; denotes the covariance between ; and ;. We define

Pij = ;
005

as the correlation coefficient between 3; and ;.

The objective of this paper is to learn about 72, the asymptotic variance of f (,é) The
central challenge is that 72 depends on the covariances o;;, which are not estimable in our
setting because the underlying microdata are unavailable. This raises the key question: what

can be learned about 72 when o;; for i # j cannot be estimated?

3 Inference Procedure

~

Since the asymptotic variance of f(3) depends on the correlation structure across the esti-
mated causal effects—and this correlation structure cannot be estimated in the absence of
microdata—we consider an alternative approach to inference on f(3). We ask: given the
observed information, how large could the asymptotic variance of f (,@) be? We then use an
estimate of this variance upper bound to conduct valid hypothesis tests on f(3).

To motivate this approach and provide a rationale for focusing on the variance upper-

bound, consider testing:

Hy: f(B) <k against H;: f(8) > k. (3.1)

When the variance 72

can be consistently estimated, standard ¢-tests control size and are
uniformly most powerful. The difficulty arises when the correlations across effects (p;;)
are unknown and 72 cannot be estimated. In this case, the problem can be framed as

hypothesis testing with nuisance parameters, p;; for ¢ # j. Finding the UMP test in this

!The delta method relies on a first-order (linear) approximation of the function f(-) around @. Under
the maintained assumptions, this approximation is valid asymptotically. However, in finite samples, if the
variance of B is large, B may deviate from 8 with non-negligible probability, making the linear approximation
less accurate.



setting corresponds to identifying the least favorable distribution of the nuisance parameters
(Theorem 3.8.1 in Romano and Lehmann, 2005).? While least favorable distributions are
often challenging to characterize (see, e.g., Elliott, Miiller and Watson, 2015), our setting
is simplified by the fact that the nuisance parameters enter the distribution of f (,[;') only
through its variance. Since power is minimized when variance is maximized, finding the
least favorable distribution—and hence the uniformly most powerful test—corresponds to

2. This provides the statistical rationale

finding the correlation structure that maximizes 7
for focusing on the variance upper bound.

In Section 3.1, we consider the general setting where no additional structure is imposed
on the correlation structure, so the variance upper bound is determined solely by the math-
ematical constraints of the correlation matrix. In Section 3.2, we specialize to cases where
treatment assignment is either completely randomized or randomized conditional on observed
covariates. In this setting, we provide a novel characterization of the covariance structure

that allows us to incorporate information from prior studies, economic theory, or other data

sources to impose sign constraints on elements of the covariance matrix.

3.1 Worst-Case Inference

We can re-express Equation (2.1) in terms of the correlations p;; as follows:

d D) 2 d d o o
%= Zl <0i—g(ﬁ?)) + Zl 21 pij 0:0; g(ﬁ?) %?) (3:2)
{i,5:1#5}

Since f; and o; can be consistently estimated from the observed data, obtaining an upper

bound for 72 amounts to maximizing Equation (3.2) with respect to p;; for i # j, subject to

2 A least favorable distribution is the distribution on the nuisance parameters under which the test performs
the worst, or in other words, the distribution under which the probability of correctly rejecting a false null
is smallest. If a test controls size and has good power even under this “worst-case” scenario, then it will
perform at least as well under all other admissible distributions.



certain constraints. We formulate it as the following convex optimization problem:

N{[jx]gn:lze T2 SDP.1
subject to V>0 (C.1)
Pij = Pji Vijg=1,...,d (C.2)
pi; € [—1,1] Vi, j=1,...,d (C.3)
pii =1 Vi=1,...,d (C.4)

Constraint (C.1) requires the variance-covariance matrix to be positive semidefinite; Con-
straint (C.2) enforces symmetry of the variance-covariance matrix; and Constraint (C.3)
ensures that all pairwise correlations lie within [—1,1]. Problem (SDP.1) is therefore a
well-defined semidefinite program (SDP) that can be solved using existing optimization tools
(Grant and Boyd, 2008, 2014). A key advantage of this formulation is its flexibility: we
can incorporate available information about the correlations as additional constraints. For
instance, in some cases, it may be known that two estimates are uncorrelated, such as when
they are constructed using independent, non-overlapping samples. This information can be
incorporated into the optimization problem by fixing the corresponding correlation to be
zero. This flexibility is particularly important for the analysis in Section 3.2, where we
leverage our characterization of the off-diagonal entries of the covariance matrix to impose
theory-motivated sign restrictions.

We denote the maximum variance obtained by solving SDP.1 as 72 and note the fol-
lowing. First, confidence intervals constructed using 7., Will, by construction, have weakly
higher coverage probability than those based on 7. While this reduces power, it guarantees
size control; coverage is exact only when 7, = 7. Second, in settings where estimating the
covariance across estimates is feasible but costly, we recommend that researchers first test

their hypotheses using 7,.x. Rejecting a null hypothesis under the worst-case variance implies

that the null would also be rejected using the true variance. This allows researchers to con-



duct valid inference while avoiding the costs of computing the full covariance matrix. Finally,
in Appendix Section A.1, we compare our approach to that of Cocci and Plagborg-Mgller
(2024) who propose a method for worst-case inference when matching structural parameters
to empirical moments in overidentified settings. We show how tighter bounds can be found
than what is implied by Lemma 1 in Cocci and Plagborg-Moller (2024), and illustrate through
an example why maximizing the variance is challenging even in the simple case where there

are no additional constraints beyond those in SDP.1.

3.2 Worst-Case Inference Under Random Treatment Assignment

In contrast to the generic case considered in Section 3.1, this section leverages information
about treatment assignment to derive more powerful tests on cost-effectiveness parameters.
When treatment is randomized—either completely or conditional on observables—we obtain
a novel, interpretable characterization of the covariance matrix. This characterization allows
researchers to impose sign or independence restrictions on the correlation matrix, grounded
in theory, prior evidence, or auxiliary data. Incorporating these restrictions can substantially
sharpen variance bounds and deliver more precise inference on policy-relevant parameters.
Let Y;;(1) denote the treated potential outcome j for unit i and Y;;(0) denote the control
potential outcome j for unit i, where j € {1,...,d}. Let Z; € {0,1} indicate treatment
assignment, where Z; = 1 if unit ¢ is treated and Z; = 0 otherwise. We assume random

assignment, meaning that treatment is independent of the full vector of potential outcomes:
(mju),yij(())) L7 forall j=1,....d

The observed outcome is Y;; = Z; - Y;;(1) + (1 — Z;) - Y;;(0). For each outcome j, the average

treatment effect (ATE) is given by 5; = E[Y;;(1) — Y;;(0)], and we estimate it using the
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difference in sample means between the treated and control groups:

~ 1 1
Bi=— > Yij—— Yi;
ny . no .
: ;=1 : ;=0

where n; and ng are the number of treated and control units, respectively. Let B € R? denote
the vector of estimated treatment effects. In this setting, the asymptotic variance-covariance
matrix V has a structure that allows for a simple and interpretable characterization, sum-

marized in the following proposition.

Proposition 1. Let 3, and (3, denote the average treatment effects of a randomized treatment

Z; € {0,1} on two outcomes Yy, and Y;q respectively. Let the vector {(Vi,(0),Yip(1),Yiq(0),Yig(1), Zi) }i_,
be i.i.d. across units. Then, the asymptotic covariance, denoted by AsyCov(-), between the
difference-in-means estimators B\p and B\q s given by:

o\ Cov(Yy,Yi | Zi=1) Cov(Yy,Yi | Z =0)
A — P> q P> q
syCov (51”’ f@q) P(Z; = 1) P(Z; = 0)

The proof of Proposition 1 is in Appendix Section B.1. The proposition shows that the
asymptotic covariance between estimated treatment effects Bp and Bq depends only on the
covariances of outcomes Y;, and Y, within the treatment and control groups. In particular,
if the outcomes are positively correlated within both groups, the treatment effects on those
outcomes must also move in the same direction. For example, in the case of a randomized
tax credit expansion called Paycheck Plus, the MVPF depends on the effects of the program
on after-tax income, earnings, and labor force participation.® Since individuals with higher
earnings also tend to have weakly higher after-tax income and are weakly more likely to
participate in the labor force, Proposition 1 implies that the off-diagonal entries of V are non-
negative. This information can be incorporated as additional constraints in the optimization
problem SDP.1, thereby producing a (weakly) tighter upper bound. If it is known that all

covariances between outcome pairs are non-negative as in the Paycheck Plus MVPF, we can

3The Paycheck Plus program is studied in Miller et al. (2017) and the MVPF for this program is computed
in Hendren and Sprung-Keyser (2020).
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solve the following optimization problem to obtain the variance upper bound:

N%?X}lgnzlze 72 SDP.2
subject to V>0 (C.1)
Pij = Pji Vijg=1,...d (C.2)
pij € [—1,1] Vi, j=1,..,d (C.3)
pii =1 Vi=1,..d (C4)
pi; >0 Vij=1,..d (C.5)

In Section 5, we show that adding Constraint C.5 to the optimization problem reduces the
width of the Paycheck Plus MVPF confidence intervals by nearly 30%.
We also extend Proposition 1 to settings where treatment assignment is random only

conditional on covariates, such that
(Yi(1),Y;;(0)) L Z | X; forall j=1,...,d

where X; € R* is a vector of observed covariates. A similar characterization of the asymptotic

covariance under unconfoundedness is provided in Appendix Section B.2.

4 Breakdown Analysis

In Section 3, we proposed a method that constructs worst-case confidence intervals for cost-
effectiveness parameters, guaranteeing appropriate coverage regardless of the true correlation
structure across causal effects. The strength of this method is its robustness: it delivers
valid inference without making parametric assumptions about which correlation structures
are more likely than others. The drawback is that tests based on the worst-case variance
may leave policymakers underpowered to reject relevant null hypotheses. In this section,

we develop a complementary approach to inference: we specify a set of plausible correlation
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structures, place a probability distribution over them, and ask: how likely is it that a given
hypothesis would be rejected if the true correlation structure were drawn from this set?

We begin by specifying three elements. First, we fix the null hypothesis of interest. For ex-
ample, in the case of the MVPF, a policymaker may wish to test whether one dollar of govern-
ment spending generates more than one dollar of benefits for recipients, i.e., Hy : MVPF < 1
vs. H; : MVPF > 1. Second, we specify the set of admissible correlation structures. For
instance, Proposition 1 may imply that correlations across the estimated causal effects are
non-negative, so the admissible set is all correlation matrices with non-negative off-diagonal
elements. Finally, we specify a probability distribution over this admissible set. For example,
a policymaker might assume that all correlation structures in the admissible set are equally
plausible. Alternatively, they might want to assume that correlation structures closer to inde-
pendence are more plausible in their setting. We operationalize this by placing an LKJ prior
(Lewandowski, Kurowicka and Joe, 2009) over the admissible set. The LKJ distribution has
density 7(p) oc det(p)"~!, where 7 is the parameter governing which correlation structures
are more likely than others. When n = 1, the prior is uniform over all correlation matrices.
Larger values of 1 place more mass near the identity matrix, favoring weaker correlations.

Next, we repeatedly draw from the specified distribution of correlation structures and test
whether the null hypothesis is rejected under each draw. We define the breakdown statistic
as the share of correlation structures under which we are unable to reject the null hypothesis.
For policymakers, the breakdown statistic provides a transparent measure of how fragile a
conclusion is to uncertainty about correlations. A breakdown statistic close to zero implies
that the conclusion is robust to most correlation structures, whereas a value close to one
indicates that the null hypothesis is unlikely to be rejected under any plausible correlation
structure. We refer to this approach of assessing how easily a conclusion “breaks down”
under alternative correlation structures as breakdown analysis.* Finally, note that if a null

hypothesis can be rejected even under the worst-case correlation structure derived in Section

4See Manski and Pepper (2018); Masten and Poirier (2020); Diegert, Masten and Poirier (2022); Ram-
bachan and Roth (2023); Spini (2024) for similar approaches.
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3.1, the breakdown statistic must equal zero: by definition, all other admissible correlation
structures imply a (weakly) smaller asymptotic variance than the worst case and therefore
also lead to rejection of the null.

The exact algorithm for estimating the breakdown statistic is described in Appendix
Section C; we provide a sketch of the algorithm here. We aim to assess the robustness of
inference on f(3) to uncertainty about the asymptotic correlation structure of the estimated
causal effects B € R?. We define the robust region RR; as the set of admissible correlation

matrices under which the null hypothesis Hy : f(8) < k is rejected at level a:

RR; = {p€R: f(B)~ 2 7(p) 2 k}.

where 72(p) denotes the asymptotic variance of f(3) under the correlation matrix p, R is
the set of all admissible correlation matrices, and z, is the 1 — a quantile of the standard
normal distribution. We then define the breakdown statistic as the probability that the null
is not rejected under an LKJ prior 7 on p:

BR; =1— Pr[peRRy.

p~T

To estimate the Breakdown Statistic, we sample p(I), ..., p™) from the specified LKJ prior
distribution 7. For each draw, we compute the implied standard error 7(™ and determine
whether the null hypothesis is rejected. The estimated Breakdown Statistic is the proportion

of draws under which we are unable to reject the null hypothesis of interest:

N

_ 1
BR;=1— — (m),
Ry Ng;R

In Section 5, we describe how the Breakdown Statistic can help a policy-maker choose from

a menu of policies to fund.
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5 Application: Marginal Value of Public Funds

We illustrate our method by conducting inference on the Marginal Value of Public Funds
(MVPF), a widely used metric for evaluating the welfare consequences of government policies.
We first outline the MVPF framework and explain why our approach is particularly well
suited for inference in this setting, before applying the tools developed in Sections 3 and 4
to construct valid confidence intervals for MVPF's across eight policies.

Hendren and Sprung-Keyser (2020) popularized the Marginal Value of Public Funds
(MVPF) as a unified metric for evaluating the “bang-for-the-buck” of public spending. An
MVPF of 1 means that a policy delivers one dollar of benefits to recipients for each dollar of
net government cost. Formally, the MVPF is defined as the benefits provided to recipients

of a policy divided by the net cost borne by the government:

Benefits AW

MVPE = Net Government Costs  AE — AC’

where AW denotes the estimated benefits to individuals, AFE is the government’s initial
expenditure on the policy, and AC' is the estimated reduction in government costs induced
by the policy’s causal effects.

Four features of the MVPF framework make our proposed method particularly well suited
for valid inference. First, the MVPF is a non-linear function of multiple causal effects. To
illustrate, consider the MVPF of the expanded Earned Income Tax Credit (EITC) program,
Paycheck Plus. Miller et al. (2017) estimate the causal effects of the program on several
outcomes, including earnings, employment, and after-tax income. These estimates, reported

in Table 1, form the input vector:

!/

/
B=1|8, B Bs Bi Bs Bﬁ} = {0.009 0.025 654 33 645 192
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From these causal effects, the MVPF for Paycheck Plus is constructed as

_ 1399 x (45 — ) + 1364 x (34.8 — )
(Bs — Ba) + (Bs — Bo)

MVPFPaycheck Plus = f(g)

= 0.996.

Second, in most applications, the only available information are the reported causal effect
estimates and their standard errors. For example, the effects of Paycheck Plus are estimated
using confidential administrative tax data, and the original study does not report the corre-
lation structure across outcomes. Thus, the information available for inference is limited to
the estimates and standard errors in Table 1. To conduct inference in this setting, Hendren
and Sprung-Keyser (2020) assume a correlation structure across estimates. As we illustrate
in Appendix Section A.2, relying on an assumed correlation structure can imply confidence
intervals that are not guaranteed to have the correct coverage. Our method ensures valid
inference without requiring the variance-covariance matrix to be assumed or consistently
estimated.

Third, Hendren and Sprung-Keyser (2020) show that reallocating spending from Policy B
to Policy A is welfare-improving if and only if MV PF4 > MV PFp. Testing the hypothesis
Hy : MVPF, < MV PFg, then, is central to the policy choice problem.” Our method
provides a test for this hypothesis that controls size under any correlation structure.

Fourth, because the MVPF reflects the shadow price of redistribution, a welfare-maximizing
government should, in principle, be willing to pay to reduce statistical uncertainty in its esti-
mated cost of redistribution (Hendren and Sprung-Keyser, 2020). In Section 3.2, we show how
mild, setting-specific assumptions can be used to sharpen inference on the MVPF, offering a
systematic way to reduce statistical uncertainty.

We apply our inference method to the MVPF of eight government policies spanning differ-
ent domains of public expenditure: three job-training programs (Job Start, Work Advance,

Year Up), two cash transfers (Paycheck Plus, Alaska Universal Basic Income), a health in-

5Here, we assume that the beneficiaries of both policies receive equal welfare weights.
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surance expansion (Medicare Part D), childcare spending (foster care provision), and an
unemployment insurance (UI) expansion.® The estimated MVPFs and 95% confidence in-
tervals constructed by solving SDP.1 are shown in Figure 1. Details of each policy and its
MVPF calculation are provided in Appendix Section D.

Several lessons emerge from Figure 1. First, even without assumptions on the off-diagonal
entries of the variance-covariance matrix, we can reject the null that the MVPF of Job Start
or Year Up exceeds one under any correlation structure, implying that a dollar spent on
these job-training programs delivers less than a dollar in benefits. Second, using the variance
upper bound, we test Hy : MV PEjaska vt < MV PFjop start-. We reject this null hypothesis,
suggesting that reallocating spending from job-training programs to universal basic income
programs could be welfare-enhancing. Finally, our estimates highlight meaningful statistical
uncertainty in the relative ranking of some policies. For example, while the point estimates
suggest that reallocating funds from job training to Ul extensions is welfare-improving, our
inference exercise shows that the uncertainty in these estimates precludes such a conclusion.

The only policy for which we have access to the underlying microdata is Medicare Part
D. Using this data, we can recover the full variance-covariance matrix and compute exact
confidence intervals, something that is infeasible for the other policies we study. Table 2
compares three sets of confidence intervals for the estimated MVPF of Medicare Part D:
exact intervals using the estimated correlation structure, intervals assuming all causal effects
are uncorrelated, and worst-case intervals from Problem SDP.1. The exact confidence in-
tervals rule out MVPF values below 0.80 and above 1.95, whereas the worst-case confidence
intervals rule out values below 0.17 and above 2.57. These results show that our worst-case
intervals remain informative even without microdata, but also highlight a key takeaway for
practitioners: reporting the estimated covariance matrix across causal effects, when feasible,

can substantially improve the precision of ex-post inference.

6The MVPFs for Job Start, Work Advance, Year Up, Paycheck Plus, and Alaska Universal Basic Income
are computed in Hendren and Sprung-Keyser (2020). The MVPF for Medicare Part D is computed in
Wettstein (2020). The MVPF for foster care provision is computed in Baron and Gross (2025). The MVPF
for the Ul expansion is computed in Huang and Yang (2021).

“Since these MVPFs are based on independent samples, we assume they are uncorrelated.
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A policymaker choosing among policies may care about whether we can robustly conclude
that a policy “pays for itself,” rather than focusing only on the statistical uncertainty sur-
rounding the estimated returns to each policy. To answer this question, we use the Breakdown
approach from Section 4. The Breakdown Statistic summarizes robustness by reporting the
share of admissible correlation structures under which the null hypothesis Hy : MVPF < 1
is not rejected. We compute this statistic in Table 3 using a uniform prior over the space
of correlation matrices.® Comparing Medicare Part D, Foster Care Provision, and Ul Ex-
tension, we find that the conclusion that the MV PF > 1 is most robust for Foster Care
Provision, which has a Breakdown Statistic of 0.67. Put differently, a Breakdown Statistic
of 0.67 means that the conclusion that foster-care provision pays for itself fails to hold un-
der roughly two-thirds of admissible correlation structures. This illustrates the value of the
Breakdown Statistic: it makes clear not only whether a policy appears cost-effective, but also
how fragile that conclusion is to uncertainty about the correlation structure.

Finally, we turn to policies evaluated using randomized trials, the setting of interest in
Section 3.2. In these cases, Proposition 1 provides an interpretable characterization of the
covariance structure that allows us to impose sign restrictions on correlations across outcomes.
For example, in the case of Paycheck Plus, it is plausible to assume that individuals with
higher after-tax income also have higher earnings and are more likely to participate in the
labor force. Incorporating such restrictions, we compute the MVPF confidence intervals
by solving Problem SDP.2. Figure 2 reports the resulting intervals for Job Start, Paycheck
Plus, Work Advance, and Year Up. A key takeaway is that sign restrictions can meaningfully
sharpen inference: for Paycheck Plus, the data allow us to rule out MVPF values below -
0.38 and above 2.37, reducing the width of the confidence interval by nearly 30% relative to
the worst-case bound. This demonstrates how even mild, theory-motivated assumptions can

deliver substantially more informative inference for policy analysis.

8Because the policy-relevant threshold is MV PF > 1, our Breakdown Analysis focuses on policies with
point estimates above 1; if the point estimate of the MVPF is less than 1, the null can never be rejected and
the Breakdown Statistic is mechanically equal to 1.
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Table 1: MVPF Calculation for Paycheck Plus

(1) (2) (3)

Year Estimate SE

Average Bonus Paid 2014 1399

Average Bonus Paid 2015 1364

Take-Up 2014 45.90%

Take-Up 2015 34.80%

Extensive Margin Labor Market (3;) 2014  0.90% 0.65%
Extensive Margin Labor Market (3,) 2015  2.5% 0.91%
Impact on After Tax Income ([33) 2014 654 187.79
Impact on Earnings (534) 2014 33 43.35
Impact on After Tax Income (Bs) 2015 645 241.15
Impact on Earnings (36) 2015 192 177.71
WTP 1071

Net Government Costs 1074

MVPF 0.996

Notes: The table reports the inputs to compute the MVPF for the Paycheck Plus
program. The causal effects and their corresponding standard errors are reported
in Miller et al. (2017). Using these estimates as inputs, the MVPF for Paycheck
Plus is computed in Hendren and Sprung-Keyser (2020).
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Table 2: Inference for Medicare Part D MVPF

(1) (2) (3) (4)
MVPF  Exact CI Independence CI Worst-Case CI

137 [0.80, 1.95]  [0.52, 2.22] [0.18, 2.57]

Notes: The table reports 95% confidence intervals for the MVPF
of the introduction of Medicare Part D, using causal effects re-
ported in Wettstein (2020). When constructing the MVPF, we
use the unconditional version of the estimated causal effects of the
policy on income and labor force participation for simplicity. The
exact approach through which it is computed is detailed in Ap-
pendix Section D. Column 1 reports the point estimate for the
MVPEF. Column 2 reports the exact confidence intervals for the
estimated MVPF. The exact confidence intervals are computed
with the Seemingly Unrelated Regression (SUR) approach of Zell-
ner (1962) using the (publicly available) microdata underlying the
causal effects in Wettstein (2020). Column 3 reports the confi-
dence intervals under the assumption that all the causal effects are
uncorrelated with each other, i.e., the off-diagonal entries of the
variance-covariance matrix are equal to 0. Column 4 reports the
confidence intervals computed by solving SDP.1, using the method
described in Section 3.1.
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Table 3: Breakdown Statistics for MVPF

(1)

Breakdown Statistic

Medicare Part D 0.85
Foster Care Provision 0.67
UI Extension 0.95

Notes: The table reports Breakdown Statistic for the
MVPF of Medicare Part-D (Wettstein, 2020), Foster Care
Provision (Baron and Gross, 2025), and extension of Un-
employment Insurance (Huang and Yang, 2021), using the
method described in Section 4. The reported Breakdown
Statistic is calculated with respect to the null hypothesis,
Hy : MVPF < 1. We use a uniform prior (LKJ distribu-
tion with n = 1) over the space of all correlation structures.
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Figure 1: MVPF Confidence Intervals
Notes. The figure reports the 95% confidence intervals for the MVPF of eight different policies. The construction for the MVPF
of each policy is detailed in Appendix Section D. The confidence intervals are computed using the method described in Section

3.1, by solving SDP.1.
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Figure 2: MVPF Confidence Intervals with Sign Constraints
Notes. The figure reports the 95% confidence intervals for the MVPF of four different policies that are evaluated using randomized
trials. The confidence intervals are computed using the method described in Section 3.2, leveraging Proposition 1 to include sign
constraints where appropriate. The construction for the MVPF of each policy as well as the sign constraints used are detailed

in Appendix Section D.
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A Connection to Existing Approaches

A.1 Inference Procedure in Cocci and Plagborg-Mgller (2024)

In this section, we contrast our approach described in Section 3 with that of Cocci and

Plagborg-Mgller (2024), who study a related problem in the context of calibrating structural

parameters to empirical moments in over-identified settings. They provide a convex opti-

mization formulation for bounding the worst-case variance and, in Lemma 1, show that in

the absence of additional restrictions, the variance can be maximized by inspecting the sign
9f(B) 9£(B)

of the cross-partial term “on g If this product is positive, their result suggests setting
i j

pi; = 1 maximizes the variance, while if it is negative, the variance is maximized by setting
pij = — L.

To illustrate the challenging nature of worst-case inference, even in the absence of ad-
ditional constraints, consider a stylized case where inference is conducted on a function of

three causal effects (d = 3). Suppose additionally that

0f(B)ofB) _, 9f(B)Of(B) _, 9f(B)If(B)

A TN AU vl AR ZINE)

961 0P C 0B OB C 0B OB

Following Lemma 1, the implied “variance-maximizing” correlation matrix would be:

Bi B B
Bl1 1 1

Bl 1 1 -1

Bel 1 =1 1

However, this matrix has an eigenvalue equal to —1, meaning it is not positive semidefinite
and therefore does not satisfy Constraint (C.1) in SDP.1. While the bound implied by such
a correlation structure is a valid upper bound, a tighter upper bound can be obtained by
explicitly enforcing the positive semidefiniteness constraint, as in the convex optimization

problem SDP.1. This example highlights the difficulty of identifying the tightest possible
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worst-case variance bound, even in the absence of additional constraints.

Finally, while Cocci and Plagborg-Mgller (2024) note that additional constraints can be
incorporated directly into their convex optimization framework, it may not always be obvious
to the researcher what those constraints should be. Section 3.2 provides guidance on how
to introduce such constraints in practice: for example, by exploiting structure in random-
ized treatment designs or by leveraging settings where treatment is random conditional on

observables.

A.2 Inference Procedure in Hendren and Sprung-Keyser (2020)

To construct confidence intervals for Marginal Value of Public Funds (MVPF) estimates,
Hendren and Sprung-Keyser (2020) adopt a parametric bootstrap procedure. They begin
by specifying a correlation structure across the underlying causal effect estimates. This
correlation structure is user-specified and chosen to “maximize the width of [their| confidence
intervals where estimates are from the same sample.”” Conditional on this specification, they
repeatedly draw from a joint normal distribution centered at the reported estimates with the
chosen correlation structure. For each draw, they compute the implied MVPF, generating a
simulated distribution of the statistic. The 2.5th and 97.5th percentiles of this distribution
are used to construct the confidence intervals.

If the correlation structure specified in the first step of their procedure happened to
coincide with the one that maximizes the width of the confidence intervals, then the bootstrap
approach of Hendren and Sprung-Keyser (2020) would yield valid inference, and the resulting
intervals would match ours. The key distinction is that our method does not assume this
structure ex ante: instead, we formally identify it by solving SDP.1. Because the variance-
maximizing correlation structure is rarely obvious, simply positing one does not guarantee

size control. By casting the search as an optimization problem, our approach ensures valid

9The method is described in detail in Online Appendix H of Hendren and Sprung-Keyser (2020) as well
as Section I.A of the replication files, accessible at https://github.com/OpportunityInsights/welfare_
analysis.
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inference regardless of the true correlation structure.

To illustrate the pitfalls of assuming a candidate worst-case correlation structure, we
revisit the MVPF for Paycheck Plus, described in Section 5. Hendren and Sprung-Keyser
(2020) assume that the underlying causal effects are perfectly positively correlated, which
yields confidence intervals for the MVPF of [0.870,1.190]. However, solving Problem SDP.1

reveals that the true worst-case correlation structure is instead

Bl B\2 33 34 35 36

| 1
Bl 1 1
Bl 1 1 1

Byl -1 -1 -1 1
Bs| 1 1 1 -1 1
Be|—-1 -1 -1 1 -1 1

where each entry denotes the pairwise correlation p;; = Corr( @, BJ) Under the correct worst-
case correlation shown above, the implied confidence intervals are [—0.941, 2.934]. This exam-
ple highlights how assuming a correlation structure—even one designed to be conservative—
need not deliver valid inference if it is misspecified. By contrast, our optimization-based
approach guarantees size control by formally identifying the correlation structure that max-
imizes the variance.

A further advantage of our framework is that it avoids reliance on correlation matrices that
may not be feasible. In practice, it can be difficult to tell whether a user-specified matrix
respects the geometry of a valid correlation structure—specifically, whether it is positive
semidefinite. As we show in Appendix Section A.1, imposing this constraint explicitly can

lead to tighter confidence intervals with valid coverage rates.
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B Proposition 1

B.1 Proof of Proposition 1

We begin by writing

where
1 1
bl = p Z Yip, : Z i, and similarly for Y, ;,Y,,
: ;=1 Z,
Then,
Cov (Bpa Bq) = Cov (}_/;7,1 - }_/30,07 }_/;171 - _q,O)
= Cov (Yfp,l, Yq,1) + Cov (Y

.0 Ya0) — Cov (Y1, Yy0) — Cov (Y0, Yy 1)

Under random assignment and i.i.d. sampling, the treated and control groups are independent

samples from the population. Therefore,

Cov (YpJ, }7:1,0) 0, Cov (Y Y, 1) =0

So:

Cov (Bp,5q> (Cov( D1 ql) + Cov( ,Y,O)

We now characterize each term. Because {Yj,, Y.}, ,

_, is an i.i.d. sample from the treated
population of size ni, we have:

COV( plai/;],l) = n—COV (Y;p, iq ’ Z = 1)
1

Similarly, for the control group:

COV (}7;7,073/;1,0) = —COV (Y;p, iq | Z = 0)

Ny
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So,
oy 1 1
Cov (B By) = —Cov (Yiy, Yig | Zi = 1) + —Cov (Vi Yig | Z = 0)
nq No

As n — oo, the Law of Large Numbers implies:

So,

5 2\ 1 [(Cov(Yy, Yl Zi=1)  Cov(Yy,Yi | Zi=0)
Cov (ﬁpaﬁq) - n ( IP)(ZZ _ 1) + P(ZZ — O) + 0p<1)

Multiplying both sides by n, we obtain the (p, ¢)-th entry of the asymptotic covariance matrix

for /n(3 — B) as:
Cov (Vi Vi | Z1=1) | Cov (Vi Yig | =0

which proves the proposition. [

B.2 Extension of Proposition 1 to Unconfoundedness

In this section, we extend the result in Proposition 1 to the setting with covariates. Specifi-
cally, we relax the assumption in Proposition 1 that (Yij(l), Y;J-(O)) 1L Zforall j=1,...,d,

and instead assume that
(Vi5(1), Y5 (0)) L Z: | X; forall j=1,....d

where X; € R is a vector of observed covariates.

Let the data {(Yi;, Z;,X;)};_, be ii.d. across units. In order to consistently estimate the
average treatment effect under unconfoundedness using the oft-adopted regression estimator,
we make two additional assumptions. First, we assume that there is overlap, such that the
probability of being treated is bounded away from 0 and 1 at each covariate value in the

support:
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We also assume that the true conditional expectation function is linear in covariates. Specif-

ically, we assume that, for each outcome j,
E[Yi | Zi,Xi] = a; + 72 + X[ v

Let 7; be the OLS coefficient on Z; in a regression of Y;; on Z; and X,;. In this section, we
characterize the asymptotic covariance between the estimated treatment effects 7, and 7.

For each outcome j, consider the linear regression:
Y;'j = Qy + TjZZ' + X;r")/] + €ij

Define ZZ = Z; — l1;X;, the residual from regressing Z; on X; and ffij =Y;; — II;X;, the
residual from regressing Y;; on X;, where II; and II; are the population projections. Then
by the Frisch-Waugh-Lovell theorem, the coefficient 7; is equal to the slope coefficient in the

regression of Y;; on Z;, i.e.,
Define,

Then,
n
=Y wY
i=1
The asymptotic covariance between the average treatment effect estimators 7, and 7, is given

by,

Cov (7, 7,) = Cov <Z w;Yip, Z wjf/jq) = Z w? - Cov <)~/ip, )Nﬁ-q) +Zwiwj -Cov (ﬁ-p, fqu)

i=1 i#£j

AT



Under i.i.d. sampling, Cov (fﬁ-p, 17jq> =0 for 7 # j, so:

Cov (7, Ty) Zw - Cov <}~/Z-p,}~/iq>

By the Law of Large Numbers, 23" 72 % E [ZE] and 237" Z2 . Cov <Y1p,Y > LN
E [Zf - Cov <Y;p,Y;q)} Therefore, we obtain the (p,q)-th entry of the asymptotic covari-

ance matrix for v/n(7 — 7) as

Cov (7, Ty) =

Thus, if

Cov (Y, Y | Xi,Z;=1) >0 and Cov (Y, Y | Xi, Z; =0) >0  as.,

then it follows that,

Cov (7, 7,) > 0
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C Breakdown Statistic Computation Algorithm

In this section, we describe a step-by-step procedure to operationalize the Breakdown Ap-
proach introduced in Section 4.

Algorithm:

1. Fix a null hypothesis of interest:

Hy: f(B) <k against H;: f(B) > k.

2. Compute the estimate and its gradient. Calculate f(B) and the gradient Vf(B).

3. Draw correlation matrices. Sample p(V), ..., p™) ~ 7 where 7 is a prior distribution
over the space of valid correlation matrices R. We adopt the LKJ prior (Lewandowski,

Kurowicka and Joe, 2009), which has density:
m(p) o< det(p)".
When n = 1, the prior is uniform over R. Larger values of n place more mass near the

identity matrix, favoring weaker correlations.

4. Test under each draw. For each draw p(™), compute the implied standard error 7™

and determine whether the null hypothesis is rejected:
R =1{f(8) = za- 7" >k},

where z, is the 1 — « quantile of the standard normal distribution.

5. Estimate the breakdown statistic. Compute:
N

~ 1
1 (m)
BR;=1- 5> R™.

m=1
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This statistic measures the proportion of correlation structures under which the conclusion

fails to hold, assuming p ~ 7.
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D Details on MVPF Construction

In this Section, we detail the construction of the MVPF of all policies discussion in Section
5. In each case, we defer further discussion of the MVPF to the paper providing the MVPF

construction for a given policy.

D.1 Paycheck Plus

The estimates used to construct the MVPF for Paycheck Plus are drawn from Miller et al.

(2017). The estimates are summarized in the following Table:

Table D.1: MVPF Calculation for Paycheck Plus

(1) (2) (3)

Year Estimate SE

Average Bonus Paid 2014 1399
Average Bonus Paid 2015 1364
Take-Up 2014 45.90%
Take-Up 2015 34.80%

~

Extensive Margin Labor Market (3;) 2014  0.90%  0.65%

~

Extensive Margin Labor Market (32) 2015  2.5%  0.91%
Impact on After Tax Income (53) 2014 654 187.79

Impact on Earnings (/) 2014 33 43.35
Impact on After Tax Income () 2015 645 241.15
Impact on Earnings (/) 2015 192 177.71

We replicate the construction of the MVPF for Paycheck Plus from Hendren and Sprung-
Keyser (2020), as follows:

_ 1399 x (45 — ) + 1364 x (34.8 — )
(33 - 54) + (35 — BG)

MVPFPaycheck Plus — f(g)

= 0.996.

In Figure 2, we assume that the asymptotic correlation across all causal effects is non-

negative.
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D.2 Alaska UBI

The estimates used to construct the MVPF for Alaska UBI are drawn from Jones and Mari-
nescu (2022).
Table D.2: MVPF Calculation for Alaska UBI
(1) (2)

Estimate SE

Full-Time Employment Effect (8;) 0.001 0.016
Part-Time Employment Effect (5;) 0.018 0.007

We replicate the construction of the MVPF for Alaska UBI from Hendren and Sprung-

Keyser (2020), as follows:

R 1000
MV PFpjaska us1 = f(B) =

1602 1602

1000 — <Bl X 5567.88 x w) n (0.2 X 0.5 X (g x 1000 o 80830.57)

= 0.92.

D.3 Work Advance

The estimates used to construct the MVPF for Work Advance are drawn from Hendra et al.

(2016) and Schaberg (2017).

Table D.3: MVPF Calculation for Work Advance

(1) (2)
Estimate SE

Year 2 Earnings Effect (5;) 1945 692.90
Year 3 Earnings Effect (82) 1865 664.40

We replicate the construction of the MVPF for Work Advance from Hendren and Sprung-
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Keyser (2020), as follows:

R B1x(1-0.003) | Bzx(1-0.003)

MV P Fyorkc Advance = - o
Work Ad FB) e om0 — By % 0.003 — B2 x 0.003

=0.78

In Figure 2, we assume that the asymptotic correlation across both causal effects is non-

negative.

D.4 Year Up

The estimates used to construct the MVPF for Year Up are drawn from Fein and Hamadyk
(2018).

Table D.4: Year Up

O
Estimate SE
Year 0 Earnings (1) -5338 238

Year 1 Earnings (f2) 5181 474
Year 2 Earnings (f3) 7011 619
Discount Rate 3%

Tax Rate 18.6%
Per-Participant Cost  $28,290
Student Stipend $6,614

We replicate the construction of the MVPF for Year Up from Hendren and Sprung-Keyser
(2020), as follows:

(1 —0.186) X (81 + £35/0.03 + 85/1.032) + 6614

MV PFyear vp = f(B) = 28290 — 0.186 x (B1 + B2 + 3)

=0.43

In Figure 2, we assume that the asymptotic correlation across o and (3 is non-negative,

and the correlation of #; with both 8, and 3 is non-positive.
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D.5 Job Start

The estimates used to construct the MVPF for Job Start are drawn from Cave et al. (1993).

Table D.5: MVPF Calculation for Job Start

(1) (2)
Estimate SE

Year 1 Earnings Effect (3;) -499 151.65
Year 2 Earnings Effect (52) -121 209.20
(Bs)
(61)

Year 3 Earnings Effect (53 423 258.67
Year 4 Earnings Effect (5, 410 267.25

Year 1 AFDC Effect (55) 63 53.96
Year 2 AFDC Effect () 24 62.94
Year 3 AFDC Effect (57) -3 85.47
Year 4 AFDC Effect (fs) -11 84.97
Year 1 Food Stamps Effect () -45 35.66

(B
Year 2 Food Stamps Effect (59) -42 34.83
Year 3 Food Stamps Effect (1) 31 40.94
Year 4 Food Stamps Effect ((;2) 31 45.21

Year 1 General Assistance Effect (513) 24 23.54
Year 2 General Assistance Effect (f14) 7 15.14
Year 3 General Assistance Effect (815) -6 24.82
Year 4 General Assistance Effect (816) 3 26.53

We replicate the construction of the MVPF for Job Start from Hendren and Sprung-

Keyser (2020), as follows:

4 16
_ L 8% 0.993+ %3+ 606.13
MVPFJob Start — f(ﬁ) = EZ:l B . 4:;4?1_5 5 -

=0.20

In Figure 2, we assume that the earnings effect in each year is negatively correlated with

the AFDC, Food Stamps, and General Assistance effects in that year.
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D.6 Medicare Part D

The estimates used to construct the MVPF for Medicare Part D are drawn from Wettstein
(2020). The effect on labor force participation is estimated using the same specification as
in Column 1, Table 1 of Wettstein (2020). The effect on income is estimated using the same
specification as in in Column 1, Table 3 of Wettstein (2020). The semi-elasticity of demand
for insurance is estimated using the procedure described in Appendix Section D of Wettstein

(2020).

Table D.6: MVPF Calculation for Introduction of Medicare Part D

(1) (2)

Estimate SE

Effect on Labor Force Participation (/) -0.10 0.03
Effect on Income (f3) -6665.40  1986.92
Semi-Elasticity of Demand for Insurance (83) 0.14 0.03

We replicate the construction of the MVPF for Introduction of Medicare Part D from

Wettstein (2020), as follows:

0.65 x B 00 x 6126

MVPFMedicare Part D — f(a) = 25000 0.4

(0.65+0.65 x 52 — B; — 0.28 x 72.)/0.65

=1.37

The reason our MVPF estimate of the introduction of Medicare Part D departs from the one
in Wettstein (2020) is that we use their unconditional estimates on labor force participation

and income for simplicity.

D.7 Foster Care

The estimates used to construct the MVPF for Foster Care are drawn from Column 3, Table

8 in Baron and Gross (2025). We replicate the construction of the MVPF for Foster Care
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Table D.7: MVPF Calculation for Foster Care

(1) (2)
Estimate SE

Society’s Willingness to Pay (5;) 83854 29715
Cost Savings to the Government (f;) 12188 6212

from Baron and Gross (2025), as follows:

- 5
MVPFFoster Care — f(ﬁ) - WI—BQ

= 2.22

D.8 UI Extension
The estimates used to construct the MVPF for Ul Extension are drawn from Huang and
Yang (2021).

Table D.8&: MVPF Calculation for Ul Extension

(1) (2)

Estimate SE

Effect on Transfers from UI (/) 0.038 0.009
Effect on Transfers from Re-employment bonus(52) 0.019 0.011
Effect on Benefit Duration (/33) 56.91 1.96
Effect on Unemployment Duration (f4) 36.90 6.90

We replicate the construction of the MVPF for extension of Unemployment Insurance

from Huang and Yang (2021), as follows:

0.77 % % 1+0.23

MYV PFut extension = f(ﬁ) - 1+ (1/729) % (53 —55.8 —-0.5 % (ﬁg - 558) +0.12 x ,64)

=2.02
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